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This comprehensive evaluation of the behavior of rock-socketed
foundations provides a consistent and broad-based approach to
rock foundation design. It presents new procedures for realistic

modeling of the rock-socket mass system.

Because natural rock masses are among the most variable of all engineer-
ing materials, designers of rock sockets have relied targely on simple
empirical models. Although complex numerical methods can account for
geomechanical properties of rock sockets, they are not readily accessible,
and when available, they are difficult to use. The numerical approach may
show promise when fully evolved, but at present neither method provides
cost-effective design. EPRI and the Empire State Electric Energy Research
Corporation have cofunded a large foundation-research effort. EPRI report
EL-2870 provides information on transmission line structure foundations for
uplift-compression loading; report EL-3771 is a critical review of design
methods for foundations under axial uplift and compression loading; and
report EL-3777 discusses load transfer mechanisms in rock sockets and
anchors.

To develop, implement, and demonstrate improved procedures for analyzing
and designing drilled shaft foundations socketed into rock.

Geologic characterization of the rock mass provided the basis for a geo-
mechanical model of the foundation-rock mass system. The project team
reviewed and summarized analytic techniques for predicting the ultimate
capacity of axial, lateral, and torsional loading, as well as techniques for
predicting load-displacement for the three loading modes. They compared
analytic model results with full-scale test data and developed a design
example.

The report provides methods for geologic characterization of the rock mass
and a mechanical model that uses simple closed-form equations to evalu-
ate the strength and deformation properties of the rock mass. Analytic tech-
niques consider rock-mass behavior under axial, lateral, and torsional
ioading (assuming no coupling between modes) and can predict deforma-
tions of shaft foundations under each loading. The report presents
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guidelines for identifying and resolving special problems, considers the
application of analytic techniques to reported full-scale load tests, and
gives an example of the use of these techniques in design.

Until a comprehensive, three-dimensional finite-element model is devel-
oped and verified, the results of this research provide a design method,
based on a rational, analytic approach, for drilled shaft foundations in
rock. This design method departs from the commonly used empirical
models for rock-socket design. The model presented here will signifi-
cantly assist engineers in analyzing and designing more cost-effective
and reliable rock foundation systems.

Related EPRI reports evaluate procedures for predicting foundation
uplift movements (EL-4107), describe the undrained uplift behavior of
drilled shaft foundations (EL-5323), analyze drilled shaft foundations
under repeated axial loads and drained conditions (EL-5325), and
report on drilled shaft foundation load tests (EL-5915). Volume 16 of the
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for compression uplift foundation analysis and design.
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ABSTRACT

A comprehensive investigation has been made of the behavior of
foundations socketed into rock. Methods of analysis have been
the ultimate capacity and the load-displacement behavior under
(compression or uplift), lateral load or moment, and torsion.

models have been developed which allow closed form predictions

loading modes. The models for axial loading have been used in

drilled shaft
presented to predict
axial load

Simple approximate
for all of these

the interpretation

of 25 load tests from the literature to deduce the likely range of design

parameters. Only two load tests were available for lateral load analysis, and no

torsional load tests were available. More data are needed from these loading modes

for model verification. A detailed design example also is included to illustrate

the use of the design equations presented.
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SYMBOLS

ENGLISH LETTERS - UPPER CASE

A - area: of sidewall socket (Ag)

B - foundation width or diameter

D - foundation depth: in soil (Dg), in rock (D)

E - Young's modulus: of rock (Ey), of concrete shaft (E.), of rock below tip

(Ep) ., equivalent for lateral loading (Eg)

G - shear modulus: of rock (Gy), of rock below tip (Gp), equivalent for torsional
loading (Gg)

G* - equivalent shear modulus of rock mass, equal to Gp(1 + 3v./4)

H - horizontal or shear load: ultimate (Hyjt), at soil-rock contact (H,)
J - bearing capacity correction factor; polar moment of inertia

K - coefficient of horizontal soil stress: maximum passive limit (KP)

- normal (Kp) or shear (Kg) stiffness of discontinuity

Ly - travel distance along socket wall profile
M - moment: at soil-rock contact (Mg)
N - bearing capacity factor: on cohesion (N.), on friction (N.,), on overburden

(Nq), for jointed rock (N..), for oriented discontinuities (N.g)

P - jack load at tip
Pgf - peak side resistance
Q - axial load: in compression at butt (Q.), in compression at tip (Qtip), in

wlift at butt (Qy), in uplift at tip (Qut), at soil-rock contact (Qg),
at initiation of full slip (Qgg), at intercept of slip behavior (Qj), at
maximum value (Qqgx), ultimate (Quit)

R - plastic radius at limit condition; radius at which vertical displacements
vanish

RQD - rock quality designation
S - mean discontinuity spacing

- stiffness of load-displacement curve: initial elastic (S3), during slip (Sj),
for tip (S3), at maximum value (S¢ = 0)

xvii



T - torque or torsional moment: ultimate (Tyj¢), at tip (Ttip), at soil-rock
contact (Tg)

ENGLISH LETTERS - LOWER CASE

a - cavity radius

a - average height of asperities along socket
b - empirical coefficient

c - cohesion: of rock (cy), of joint or discontinuity (Cj)
e - eccentricity

f¢ - concrete uniaxial compressive strength

m - empirical strength parameter

Pa - atmospheric pressure

P - limit stress

Py - distribution of soil resistance

q - surcharge or overburden stress (= D)

qa - allowable contact stress

qy - rock uniaxial compressive strength

qult - ultimate bearing stress

r - radial distance

Yo - radius of cylinder or shaft

s - empivrical strength parameter

sy - undrained shearing resistance of soil

u - radial or horizontal displacement: of concrete (u.), of rock (uy), between

ground surface and soil-rock contact (upp)

v - circumferential displacement

w - vertical displacement: of concrete shaft or butt in compression (w.), of rock
(wy), of tip in compression (wgr), of butt in uplift (wy), of tip in uplift
(wyt), at soil-rock contact (w,), between ground surface and soil-rock

contact (wpg)

zZ - depth: to center of rotation (z.)

GREEK LETTERS - UPPER CASE

A - change

xviii



rotation under torsional load: at shaft tip (@tip), between ground surface
and soil-rock contact (®ap)

GREEK LETTERS - LOWER CASE

aE

T max

< .1

strength reduction factor

modulus reduction factor

unit weight; shear strain

angle of friction for soil-shaft interface

strain: vertical (ej), radial (ey)

plastic strain increment: major principal (Elp), minor principal (;3p)
In[5(1 - v)D/B]

bearing capacity shape factors: on No({cg), on Nv(fys)’ on Nq(gqs)

rotation under lateral load or moment: between ground surface and soil-rock
contact (f,p)

Eo/Gy for axial and lateral, Gg/G, for torsion
(2/B)(2/¢A) /2 for axial and lateral, (1/B)(32/))1/2 for torsion

Poisson’'s ratio: of rock (vy), of concrete shaft (v.), of rock below tip
(vp), equivalent for lateral loading (vg)

Gy/Gp

normal stress: major principal (o1), minor principal (o3), in-situ horizontal
(onhi), at butt (op), radial (o), vertical (o,), at tip (Utip)

vertical effective stress

shear stress: at radius ry(ry), along soil-shaft interface (r¢),
circumferential on horizontal planes (r,,), circumferential on cylindrical
surface (7yp)

maximum unit side resistance

angle of friction: of rock (¢,), of joint or discontinuity (¢j)

effective stress angle of friction

dilation angle: of rock (¥y)

discontinuity orientation
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SUMMARY

This report has been prepared for the Electric Power Research Institute (EPRI) as
an account of work on Research Project 1493, "Uplift/Compression Transmission Line
Structure Foundation Research". The general objectives of this research are the

development and implementation of rational analysis and design procedures for the

foundations of transmission line structures.

Overall, this report provides a comprehensive evaluation of the behavior of drilled
shaft foundations socketed into rock. Methods of analysis are presented to predict
the ultimate capacity and the load-displacement behavior under axial load
(compression or uplift), lateral load or moment, and torsion. All of the methods
have been presented in simple, approximate, closed form equations for ease in use.
Comparisons with limited available load test data illustrate the usefulness of the

methods presented.

CURRENT DESIGN METHODS

Current design practice for foundations socketed into rock is less than
satisfactory. A variety of empirical design rules lie at one extreme. Gross
simplification of rock mass behavior is needed to employ these rules and,
fundamentally, they do not incorporate the load-displacement behavior of the
socket-rock mass system. At the other extreme, sophisticated numerical methods can
be used. These methods have the potential to analyze the socket-rock mass behavior
realistically, but the computer codes and systems are not commonly available to
every designer. Neither extreme is convenient or appropriate for cost-effective
design. The procedures presented in this report allow for realistic modeling of
the socket-rock mass system through approximate closed form solutions which are

convenient for design.

GEOLOGICAL AND GEOMECHANICAL MODELING

The initial stage in the design process is to characterize the rock mass. First,
it is necessary to evaluate the general geological setting and the rock types
present. Some guidelines are presented for the identification and resolution of

special problems which may be encountered. Second, a mechanical model of the rock



mass is necessary to allow evaluation of the strength and deformation properties of
the rock mass. Using a simple geomechanical model, it is shown how approximate
correlations can be established between the RQD (rock quality designation) and both
strength and modulus reduction factors to evaluate the necessary rock mass

properties.

AXIAL, LATERAL, AND TORSIONAL LOAD CAPACITY

Axial capacity includes both tip and side resistance. The tip resistance is a
bearing capacity problem, and pertinent solutions to this problem are presented.
The side resistance is a problem of bond, gradual bond breakage, and subsequent
shear or slip along the socket as a function of displacement. Methods are
presented to evaluate the side resistance for the range of displacement conditions
likely to occur in practice. Lateral capacity is evaluated as a limit stress
problem similar to the expansion of a cylindrical cavity. This approach allows a
direct solution for the capacity. The torsional capacity is approximated as a

straightforward cylindrical equilibrium problem.

AXTAL LOAD-DISPLACEMENT RESPONSE

The axial uplift and compression behavior is modeled using an elastic shaft in an
elastic rock mass, where the socket-rock mass interface can be elasto-plastic. An
overlying soil layer also can be included. Equations are presented for the
bounding cases of no slip (full bond) and full slip along the interface, and
numerous examples illustrate the behavior for a variety of material parameters and
loading cases. Comparisons of the closed form equations with finite element

solutions and load tests gave good agreement.

LATERAL AND MOMENT LOAD-DISPLACEMENT RESPONSE

The lateral and moment behavior for both flexible and rigid shafts was modeled
parametrically using finite element methods. Based on these solutions, simple,
approximate, closed form equations were developed for the full range of loading
conditions, material parameters, and socket-rock mass stiffness encountered in
practice. These results are in good agreement with available solutions for the
limiting flexible and rigid cases. The solutions give both horizontal groundline

displacements and rotations and can incorporate an overlying soil layer.



TORSION LOAD-DISPLACEMENT RESPONSE

The torsion behavior is modeled as an elastic inclusion in an elastic rock mass.
Assuming that the circumferential shear stress on horizontal planes is negligible,
simple closed form equations result for the torsion-rotation problem. These
results are in good agreement with more general numerical solutions. The solutions

also can incorporate an overlying soil layer.

ANALYSIS OF FIELD LOAD TESTS

A comparison of the solutions developed herein was made with available field load
test data. For the 25 axial load tests, good agreement was found for both the no
slip and full slip conditions. In addition, the solutions can be used to back-
calculate the model parameters needed. From this procedure, positive correlations
resulted between the uniaxial compressive strength of the intact rock and the
socket-rock mass interface strength parameters. For the two lateral load tests,
essentially a linear behavior was observed at working load levels. No torsional

load test data were found for comparison.

CONCLUSIONS

This study demonstrates that drilled shaft foundations socketed into rock can be
modeled effectively using simple closed form equations. Both the capacity and
load-displacement behavior can be analyzed for axial load (compression or uplift),
lateral load or moment, and torsion. A design example illustrates that the
solution procedure is very straightforward. However, the available load test data
are quite limited, and more test results are necessary to provide complete

verification.
This study represents a major advance to current design practice and will assist

engineers significantly in the analysis and design of more cost-effective

foundation systems.
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Section 1

INTRODUCTION

Significant economy normally can be realized in design if a foundation can be
constructed on or in the surface or near-surface rock. However, designers can not
blindly follow the old adage, "when in doubt, put it on rock", because natural rock
masses are among the most variable of all engineering materials. It is mostly for
this reason that the design of foundations on or in rock has been largely empirical
until recent years. Fortunately, there have been many recent studies which have
improved vastly our understanding of the mechanical behavior of rock masses, making
possible more rational analytical treatments of rock-foundation systems. In this
report, the more pertinent of these recent analytical studies are coupled with new
analytical procedures to provide a consistent and broad-based approach to the

design of foundations in rock.

PROBLEM STATEMENT

The foundation type considered in this study is the concrete drilled shaft which is
embedded, either partially or completely, within a rock mass, as shown in Figure
1-1. 1In the case of partial embedment in rock, a soil layer overlies the rock
mass. These foundations are constructed by auger or drill and blast excavation and
then casting concrete (often reinforced) into the cylindrical hole excavated in the
rock mass. The axis of the cylinder usually coincides with the vertical direction,
but may be battered. Large batters are uncommon because of the associated

construction difficulties.

In general, the socketed shaft can be used to resist three modes of loading: (1)
axial, either compression or uplift; (2) lateral, either moment and/or shear

applied at ground level; and (3) torsional.

For single-pole transmission line structures, subjected typically to wind and ice
loading and unbalanced line tensions, all three modes of loading can be transmitted
to the foundation element. For lattice tower structures, the significant founda-

tion loadings are axial uplift and perhaps lateral.
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Figure 1-1. Cylindrical Shaft in Rock

The major design problem is to select the foundation dimensions to meet the design
criteria discussed below. 1In this report, single shaft foundations are considered
and group effects are not included. Each mode of loading is treated separately,
and possible interaction effects are not considered. At present, there are very
few data, if any, to determine the significance of coupling between the three

loading modes.

DESIGN CONSIDERATIONS

Foundations in rock must satisfy the same design criteria as any other type of
foundation: adequate stability, tolerable deformations, and cost-effectiveness.
Adequate load capacity and tolerable deformations under the applied loading must be
ensured with respect to all three possible modes of loading discussed above. The

final design also must be feasible to construct at a reasonable cost.

The primary difference between foundations in soil and those in rock is that rock

masses can be extremely variable and can surprise the designer who has not
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developed a thorough understanding of the site geology. This wvariability often
makes the characterization of a rock mass difficult because the behavior of the
mass will be influenced not only by the nature of the rock material, but also by

the discontinuities which are pervasive throughout almost all natural rock masses.

From a practical standpoint, some limiting structural factors may ultimately
control the foundation design process, particﬁlarly in "good" rock. Most "good"
rock masses have relatively high strength, low compressibility, and no unfavorable
discontinuities. When these "good" rock masses are encountered, the structural
design factors may control the foundation size. One example is when the
"allowable" concrete stress is less than that for the rock mass, in which case the
concrete design criteria will dictate the foundation size. When this situation
occurs, the use of higher strength concrete should be considered in an effort to

optimize the foundation sizing.

In other than "good" quality rock masses, the geotechnical considerations will
normally control the design, barring any construction limitations. The question
then is how to approach the geotechnical design. Four different general approaches
can be adopted: full-scale load tests, building code criteria, empirical rules, and
analytical methods. Load tests provide the most direct approach because a
full-scale foundation is constructed in accordance with the proposed production
techniques and then is tested, preferably to failure. Proper interpretation of
these data should lead to a sound design. However, load tests are costly and are
not warranted on most projects and at remote sites. Therefore, alternative

approaches must be adopted for the majority of design cases.

A second approach is to use the allowable stresses for compression loading given in
building codes. Little, if any, geotechnical information is required to design on
this basis in most codes, other than a knowledge of the rock type. Type and
function of the structure, loading conditions, tolerable deformations, etc. also
are not included. Therefore, building code criteria tend to be very conservative.
A further problem is that foundation movements will be unknown. Critical
evaluation of these code values suggests that actual design values can be
significantly larger. Depending on particulars, increases by factors of two to
more than ten may be appropriate. However, for simple and lightly loaded
structures on relatively good rock masses, it may be reasonable to use code values,
primarily because they are sufficiently high that little economy may be realized by

increasing the design values, given the structural limitations noted previously.
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Another approach to the design of foundations is to use empirical rules. One of
the more useful of these is shown in Figure 1-2, which addresses compression
loading through an empirical correlation between the allowable bearing stress and
the RQD (1), which is a modified core recovery index. The RQD (rock quality
designation) is an approximate measure of the intensity of jointing, which in turn
is a general indicator of the rock mass compressibility. This figure was developed
for a reasonably sound rock mass with discontinuities that "are tight or are not
open wider than a fraction of an inch". The authors contend that, with these
design values, the foundation settlement should not exceed 13 mm (0.5 in).
However, settlements can not be computed directly from this chart. An interesting
observation can be made from this figure. If 20 MN/m2 (2900 psi) concrete was
used, with a working stress of say 0.45 fé (9 MN/m2 or 1300 psi), all allowable
stresses in the rock corresponding to RQD values above 65 percent could not be
used. This illustrates one of the structural limitations noted previously and
points out that higher strength concrete would be useful to utilize the available

rock capacity more effectively.

Building codes and empirical rules provide some insight into the design process,
but they do not address the problem directly or provide guidelines applicable for
transmission line structures. In addition, they do not provide procedures for
computing both the load capacity and deformations of the foundation. 1In the
remainder of this report, a general procedure is presented to focus directly on

these factors.
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Figure 1-2. Allowable Bearing Stress on Jointed Rock

Source: Based on Peck, Hanson, and Thornburn (1).
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ORGANIZATION OF REPORT

Section 2 focuses on geological characterization of the rock mass, the first step
in the design process. Once this characterization is accomplished, a geomechanical
model is required to allow analytical treatment of the foundation-rock mass

system. Both of these issues are considered in Section 2.

The ultimate capacity of drilled shaft foundations under the three modes of loading
(axial, lateral, and torsional) is addressed in Section 3. Each mode is considered

separately.

In Sections 4, 5, and 6, analytical techniques are presented for the prediction of
the deformations of shaft foundations under axial, lateral, and torsional loading.
The behavior under each mode of loading is considered separately, and no coupling

between modes is assumed. These sections contain only the details of the analyses.

The application of the analytical techniques to reported full-scale load tests is
considered in Section 7, while an example of the use of these techniques in design

is presented in Section 8. Concluding remarks are contained in Section 9.
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Section 2

GEOLOGICAL AND GEOMECHANICAL MODELING

Rational design procedures for rock-socketed shafts employ analytical techniques
that are based on a conceptual model of the foundation-rock mass system. The
development of this model normally involves data gathering, from which
idealizations can be made about the nature, extent, and mechanical behavior of the
rock mass. The end result of this modeling process is a mathematical formulation
which is used to analyze the response of the foundation to applied load. In
achieving this end, a number of basic problems must be addressed. First, a
geological model of the rock mass must be developed to characterize the nature and
extent of the rock mass. Second, the mechanical behavior of the natural material
must be idealized in the form of a geomechanical model. Both stages in the
modeling process involve simplifications to keep the mathematical analysis
tractable. Common techniques for data gathering and some of the more usual

simplifications are discussed below.

GEOLOGICAL CHARACTERIZATION

The first step in the design process is geological characterization of the rock
mass. Rock masses are inhomogeneous, discontinuous media composed of the rock
material and naturally occurring discontinuities such as joints, seams, faults, and
bedding planes. The rock materials may have engineering properties that are
anisotropic, nonlinear, and stress-dependent. The discontinuities may range from
soft and weathered, to hard and unweathered, and their spacings and attitudes
(strike and dip) may vary considerably. The resulting rock mass exhibits the
characteristicé of both the material and the discontinuities which, together, tend
to make the rock mass highly directional in its deformability and strength

properties.

Site Exploration

The goal of site exploration is to characterize the rock mass, with particular
emphasis on establishing the type of rock material present, the size, frequency,
and spatial distribution of the discontinuities, the water table, and perhaps

in-situ measurements of engineering properties. For large or special structures,



such as tall buildings, major bridges, high dams, power plants, etc., extensive and
specialized exploration programs are normally carried out. Commonly these consist
of vertical and inclined borings, detailed geologic mapping, down-hole and
cross-hole measurements, etc. Extensive laboratory testing is done on the rock,
and in-situ testing may be done to measure the strength and deformation properties
of the rock mass. Furthermore, load tests are warranted for these kinds of
structures. With the data obtained, the rock mass and its properties can be

characterized well.

For more conventional structures, and particularly for transmission line
structures, the exploration and testing will be more limited, typically consisting
of vertical borings, limited mapping, some simple laboratory core testing, and
perhaps a few down-hole measurements. With these more limited data, the
characterization is less complete, and increased reliance is placed on prior
information and correlations in the literature. Judgment and experience enter more

prominently into the design process in this case.

Regardless of the level of detail, the exploration program should provide
sufficient information to: (1) allow the development of a geological model of the
site being investigated, and (2) establish the engineering properties necessary.

These are the necessary input data for the analysis and design.

Special Geological Problems

During the characterization process, special geological features should be
identified because they have the potential to influence the design strongly. Many
of these have been discussed in detail (1, 2). The following is a brief discussion
of the key concerns related to weathering, chemical effects, solution phenomena,

creep, subsidence, and collapse structures.

Weathering is a process of rock alteration which increases in significance as the
climate becomes warmer and more humid. There can be a deep profile of complexly
weathered rock between the overlying residual soil and the underlying unweathered
rock. In extreme cases, this weathered zone may be deeper than 50 meters (150

ft). 1In this weathered zone, a gradual grading occurs from soil with rock pieces,
to rock blocks in a soil matrix, to rock with weathered discontinuity zones. This
variability with depth has to be identified carefully during exploration because it
may control the design process (i.e., is it soil-like or rock-like?) and influence

the field construction operations.
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In some rock types, chemical effects can result in serious heaving problems. Among
the potentially troublesome rocks are those which contain reactive minerals such as
pyrite, pyrrhotite, marcasite, and anhydrite. For example, in the "alum shales",
which are pyrite-bearing, black, carbonaceous shales of Paleozoic age, significant
swelling problems have occurred because of the growth of crystals of gypsum or
jarosite resulting from the oxidization of pyrite and the reaction of the breakdown
products with calcium carbonate. Sulfuric acid, also produced in the reaction, has
been known to attack foundation concrete vigorously. Placement of a moisture

barrier between the rock and foundation can minimize this problem substantially.

Solution problems often present themselves in more soluble rock types, such as
limestone, gypsum, and salt. Exploration, design, and construction problems can
arise because of irregular bedrock surfaces, open vertical joints, clay seams,

cavities, and sinkholes.

Creep is a common problem when dealing with some of the softer rock types, such as
salt, gypsum, and, to a lesser degree, compaction shales. Creep is analogous to
secondary compression in soil and can be analyzed in a similar manner, using
laboratory creep test data. If the overburden stress on these rocks is reduced
significantly, time-dependent heave may result. This phenomenon also may be

addressed using laboratory heave test data.

Subsidence is a problem in many mining regions of the world. For modern room and
pillar or longwall mines, the designs are based on assessment of the surface
subsidence from the mining operation. The surface subsidence trough can be
determined and a foundation-structure system can be developed to accommodate the
subsidence pattern. However, over older abandoned mines, caution must be exercised
because of the potential for mine degradation, pillar collapse, etc. which may
result in residual subsidence or surface collapse. Extraordinary foundation

schemes may be necessary to minimize these potential problems.

A final geological problem to consider is the possibility of pore collapse under
structural loads. This is possible in the young, soft, carbonate rocks, and in
volcanic cinders and friable tuff. With their weakly cemented porous structure, an
imposed stress exceeding the threshold stress can break down the cement or crush
the interpore webs, causing a sudden collapse. These types of rocks must be
pre-collapsed, or the foundation stresses must be maintained well below the

threshold stress.
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GEOMECHANICAL MODELS

Analytical predictions in geotechnical engineering require the adoption of a model
of the behavior of the real material. For example, to predict the short term
bearing capacity of a foundation on a layer of clay soil, it is customary to assume
that the clay behaves in an undrained manner and that the real material can be
idealized as being purely cohesive. Predictions of the bearing capacity then are
based on the theory for a rigid punch indenting an ideal rigid-perfectly plastic
half-space. In the application of this theory, the designer must choose an
appropriate value for the undrained shear strength of the clay, and the accuracy of
the prediction will depend on the accuracy of the strength value and the model for

the clay behavior.

The same general principles apply to the prediction of the mechanical behavior of a
rock mass, because the success of the analytical prediction depends on the
appropriate choice of an ideal material to model the rock behavior, as well as the
selection of the basic input parameters for that model. Invariably, the choice of
the ideal material will depend on the type of prediction to be made and on how much
information is available. It would be pointless to adopt a highly sophisticated
model for the rock mass if the necessary geological information and test data were

not available to support its use.

For predicting the ultimate load capacity of a foundation in rock, a strength model
of the rock mass is required. Alternatively, if predictions of the foundation
movements caused by the applied loading are required, then a constitutive (or
deformation) model must be selected. Usually, the ultimate load capacity and the
deformations are considered as separate problems, requiring the adoption of a
different material model for each. Constitutive models which combine the strength
and deformation issues have been developed, allowing the prediction of the complete
load-deformation behavior of the foundation from initial loading to failure. At
present, these find major use in the research environment and rarely find
application in design practice, although this is likely to change with forthcoming

increases in computing power and usage.
In this report, the two issues of ultimate load capacity and deformations under

working loads will be treated separately. This approach is consistent with current

design practice and results in greatly simplified design methods.
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Rock Strength

The general problem of evaluating the strength of rock materials and rock masses is
beyond the scope of this report, but useful treatments of this problem are given
elsewhere (e.g., 3, 4, 5). The problem considered herein is the ultimate load
capacity of drilled shafts subjected to either axial, lateral, or torsional
loading, and different types of strength parameters will be applicable in each
case. It is assumed that the concrete shaft is able to resist the applied loading
adequately, so that the ultimate strength of the foundation will depend on the
strength of the rock mass or the concrete-rock interface and not upon the

structural strength of the concrete section.

For axial loading, the resistance will be provided by a combination of shear
stresses developed along the cylindrical interface between the concrete and rock
and the normal stress developed at the tip of the shaft. For lateral loading, the
ultimate capacity of the shaft will be a function largely of the maximum
compressive stress that can develop normal to the shaft along its leading face
(with respect to the loading) and, to a lesser extent, the tensile and shear
capacities of the back and sides of the shaft-rock mass interface. Under torsional
loading, the capacity will be primarily a function of the circumferential shear
stress that may be developed either at or near the interface between the rock and
concrete. Some resistance also may be provided by torsional shear stresses

developed at the tip of the shaft.

The limiting values of each of the stresses described above may themselves be
dependent on more fundamental strength parameters of the rock mass. Further
details are given in Section 3 where predictions of the ultimate shaft capacity are

given in detail.

Rock Mass Displacements

As with foundations in soil, the displacements of foundations in rock normally
control the design. With rock masses, however, a model must be established to
address their discontinuous nature, taking into account the properties of the rock
material and the discontinuities. When dealing with the displacements of
foundations in rock, it is usual to idealize the discontinuous rock mass as an

elastic continuum.

A geomechanical model has been suggested to establish equivalent rock mass

properties from the individual elastic properties of the rock material and the
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discontinuities (6). In general, the model considers the case of three orthogonal
discontinuity sets, as shown in Figure 2-1. The rock material is defined by the
Young’s modulus and Poisson’s ratio, E, and v, and subsequently the shear modulus,
Gy, while the discontinuities are described by a normal stiffness, Kp, shear
stiffness, Kg, and mean discontinuity spacing, S. Anisotropic rock material
properties also could be used, as long as the attitude of the property principal
planes was coincident with the attitude of the discontinuity planes. For this

model, the properties of the equivalent orthotropic elastic mass are given as (7):

=& LS | ;
E{ E, + 5: Knl) (2-1)
1 1 1 -1
Giis = (— + + (2-2)
1 (Gr S; Kgi 55 KSJ)
Ej
vij = ¥ik = Vr E; (2-3)

for i = x, y, zwith j =y, z, x and k = z, x, y. These equations describe the

rock mass elastic properties completely.

For engineering convenience, it is useful to define a modulus reduction factor, ag,
which represents the ratio of the rock mass to rock material modulus. This factor

can be obtained by re-writing Equation 2-1 as:

Ej Er
R Sy

y-1 (2-4)
This relationship is plotted in Figure 2-2. This figure shows smaller values of ajp

in rock masses with softer discontinuities (larger E, /K, values).

Unfortunately, the mean discontinuity spacing is not easy to obtain directly and,
in normal practice, RQD values are determined instead. Using a physical model, the
RQD can be correlated (6) with the number of discontinuities per 1.5 meter (5 ft)
core run, a common measure in practice. This relationship is shown in Figure 2-3.
Other models presented in the literature, using statistical or random number
premises, generally have confirmed this approach. Combining Figures 2-2 and 2-3

yields Figure 2-4, which relates ap to RQD as a function of E, /K.
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This model is most effective when good quality geological data are available to
define the discontinuity sets adequately. When the data are not sufficient to
define the x and y discontinuities adequately, the model must be simplified to deal
with the z values only. In the majority of rock masses, S, is normally less than
Sx and Sy and tends to control settlement under compression loading. The
assumption of an isotropic mass based on S, and Ky, normally gives a conservative

upper bound on the settlement.

Good physical property data also are needed. These should be obtained for the
anticipated effective stress range to be applied in the field, in tests which
impose strains compatible with those expected. If full-scale load tests or field
deformation tests are conducted, ap can be determined easily by dividing the field
test E by the value of E from laboratory tests on intact core. When the field and
laboratory testing is more limited, the wvalues given in Table 2-1 can provide some
general guidelines. The complete details of these data are given in (8). As a
first approximation, the designer can select a mean value of Ey /K = 1 m, which
yields ag = 0.1 for an RQD less than about 70 percent, and progressively higher agp

values varying linearly up to 0.6 at an RQD of 100 percent.

Table 2-1

TYPICAL RANGES IN ROCK PROPERTIES

Property Units Number of Maximum Minimum Mean
Values
Elastic Modulus, GN/m2 261 111.6 0.006 34.60
E, kip/in? 16,180 0.87 5,020
Poisson’'s Ratio, - 138 0.46 0.02 0.20
Vy
Normal Stiffness, GN/m3 12 67.59 0.24 13.00
K, kip/in3 249 0.88 47.9
Shear Stiffness, GN/m3 167 31.60 0.01 2.82
Kg kip/in3 116 0.037 10.4
K, /Kg for - 12 83.0 0.84 17.8
same rock
Ey/Kp for m 9 4,23 0.21 1.22
same rock ft 13.9 0.69 4,00

Source: Kulhawy (6), pp. 218-223.
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SUMMARY

To apply analytical techniques to the design of foundations in rock, a geological
model of the site and a geomechanical model of the rock mass must be developed.
The general principles involved have been outlined in this section. Some special
geological problems that may be encountered at the site also have been discussed.
A geomechanical model was described that may be used in the prediction of the
displacement of foundations in rock. Idealizations of the rock mass behavior have
been discussed briefly, but a more detailed treatment of this issue will be given

in Section 3.
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Section 3

ULTIMATE LOAD CAPACITY OF DRILLED SHAFTS IN ROCK

Normally the design of foundations socketed into rock will be governed by
displacement considerations. Nevertheless, the ultimate capacity of the foundation
must always be evaluated to determine the degree of safety of the proposed design.
This evaluation requires consideration of two important issues. First, the
foundation element itself must be able to resist the applied loading adequately.
Second, the rock mass surrounding the shaft must be capable of providing resistance
to the loading. In both cases, a reasonable margin of safety must be provided.

The first case is a structural design problem which is not addressed herein, while

the second is the subject of this section.

CAPACITY AS A FUNCTION OF ROCK PROPERTIES

Assuming that the concrete shaft has been designed correctly for structural
considerations, its capacity will depend on the strength of the rock mass. Three
separate modes of loading are considered herein: axial, lateral, and torsional.
These three modes are treated separately, and no coupling of the modes is
considered. The prediction of failure under simultaneously applied axial, lateral,
and torsional loading is exceedingly difficult, and no satisfactory solutions of
general applicability have been developed. Because of the uncertainty which exists
about the significance of interaction between modes, it is recommended that
conservative factors of safety be used in the design of shafts subjected to more

than one mode of loading.

AXTAL COMPRESSION CAPACITY

Theoretically, compressive loads applied to the shaft butt are transmitted to the
surrounding rock mass through both tip resistance and side resistance. The
relative importance of these resistances in determining the capacity depends on the
geometry of the shaft and the relative stiffness of the shaft concrete and the rock
mass. There also may be some interdependence between the tip and side resistances,
especially in jointed rock where both strength and stiffness will depend on the

confining stress.



Tip Resistance

It has been demonstrated from elasticity solutions (e.g., 1, 2) that, at working
loads, only a small proportion of the compressive load applied at the shaft butt is
actually transmitted to the tip. In Section 4, it will be shown that, even for a
relatively stiff, stubby shaft, the proportion of applied load transmitted to the
tip is typically within the range of 10 to 20 percent of the butt load; for more
slender shafts, the percentage is much less. Furthermore, the tip resistance
component of the compression capacity will be mobilized only after significant
displacements have occurred, at loads large enough to cause slip (relative movement
between concrete and rock) along the full length of the shaft. Even then a clean,
undisturbed surface is required to mobilize the full tip resistance. In practice,
this condition may be difficult to achieve (3, 4) and, by the time the full
capacity of the shaft has developed, the displacements may be excessive. For this
reason, it has been suggested (e.g., 5) that the tip resistance should be ignored
when determining the axial compression capacity. However, the designer may have to
assume that full slip of the shaft will occur under working load conditions (e.g.,
when large loads are applied to relatively rigid, short stubby shafts), and in
these cases some reliance has to be placed on the mobilized tip resistance. Under

these circumstances, the accurate prediction of tip resistance is necessary.

The typical tip resistance or bearing capacity failure modes for rock masses are
shown in Figure 3-1 (6). These depend on the discontinuity spacing or rock

layering, as described below.

For a thick rigid layer overlying a weaker one, failure may be by flexure. The
flexural strength is approximately twice the tensile strength of the rock material,
and the tensile strength is of the order of 5 to 10 percent of the compressive
strength. For a thin layer overlying a weaker one, failure can be by punching
which, in effect, is manifested by a tensile failure in the rock material. It is
important to realize that, in both of these cases, failure in the underlying layer

could occur first by one of the other failure modes.

For loading applied to a rock mass with open joints, where the joint spacing is
less than the foundation width (or diameter), failure is likely to occur by
uniaxial compression of rock columns. If the rock mass is idealized as a cohesive-
frictional material, the ultimate capacity is given by the Mohr-Coulomb failure

criterion as:

dult = Qu = 2c¢c tan(45° + ¢/2) (3-1)
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Figure 3-1. Bearing Capacity Failure Modes

Source: Sowers (6), p. 490.

in which quj¢ = ultimate bearing capacity, q, = uniaxial compressive strength, c¢ =
cohesion intercept, and ¢ = friction angle. The values of q, ¢, and ¢ are rock

mass (rather than intact rock) properties.

If the rock mass contains closely spaced, closed joints, a general wedge type of
failure mode may develop, as shown in Figure 3-1. The ultimate bearing capacity in

this case is given by the Bell solution (7) for plane strain conditions:
B
qult=ch+—2‘yN,Y+7DNq (3-2)

in which B = foundation width, D = foundation depth, y = effective unit weight of

the rock mass, and N, N,, and Ngq are bearing capacity factors given in Figure

v’
3-2. For a cylindrical shaft of diameter B and depth D, Equation 3-2 should be

modified to allow for the circular foundation shape:

duit = $esclNe + §7sB7N7/2 + $qs7DNg (3-3)
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in which ¢og = 1 + Nq/Nc, $ys = 0.6, and $qs = 1 + tang. For foundations at the
rock surface, D = 0. Also, the second term is normally small compared to the other

terms and is often neglected.

For cases in which the joints are spaced more widely than the foundation width,
failure occurs by splitting beneath the foundation, which eventually leads to
general shear failure. This problem has been evaluated, assuming no stress is
transmitted across the vertical discontinuity (8), to give:
Qult = JeNer (3-4)
in which N, = bearing capacity factor in Figure 3-3, and J = correction factor

given in Figure 3-4.

In the evaluation of the tip resistance outlined above, it is important to note
that the strength parameters of the rock mass, and not of the intact rock, must be
used. Values of ¢ and ¢ obtained for the intact rock material are considerably
higher than those for the rock mass, and their use will result in an overestimate

of the actual bearing capacity.

If the actual rock mass properties are not evaluated, it has been suggested (8)
that the values of ¢ or q, for the intact rock be reduced by the parameter ap, as

described previously for the rock mass modulus in Section 2. Values of ¢
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for the rock mass are typically 50 to 75 percent of the ¢ values for the intact

rock material.

Alternatively, a strength criterion for jointed rock masses (10) may be used to

determine the bearing capacity. This curved strength envelope can be expressed as:

01 = o3 + (mque3 + squ2)1/2 (3-5)

in which o1 = major principal effective stress, o3 = minor principal effective
stress, qu = uniaxial compressive strength of the intact rock, and s and m =
empirically determined strength parameters for the rock mass, which are somewhat

analogous to ¢ and ¢ of the Mohr-Coulomb failure criterion.

An analysis of the bearing capacity of a rock mass obeying this criterion can be
made using the same approximate technique as used in the Bell solution. The
details of this approach are described in Figure 3-5. A lower bound to the failure

load is calculated by finding a stress field which satisfies both equilibrium and
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the failure criterion. The rock mass beneath a strip footing may be divided into
two zones, with homogeneous stress conditions at failure throughout each, as shown
in Figure 3-5. The vertical stress in zone I is assumed to be zero, while the
horizontal stress is equal to the uniaxial compressive strength of the rock mass,
given by Equation 3-5 as sl/zqu. For equilibrium, continuity of the horizontal
stress across the interface must be maintained, and therefore the bearing capacity

of the strip footing may be evaluated from Equation 3-5 (with o3 = sl/zqu) as:

Qult = (m + J/s)qy (3-6)

For a circular foundation, a similar approach may be used, with the interface
between the two zones being a cylindrical surface of the same diameter as the
foundation. 1In this axisymmetric case, the radial stress transmitted across the
cylindrical surface, at the point of collapse of the foundation, may be greater
than sl/zqu, without necessarily violating either radial equilibrium or the failure
criterion. However, because of the uncertainty of this value, the radial stress at
the interface also is assumed to be 31/2qu for the case of a circular foundation.

Therefore, the predicted (lower bound) bearing capacity is given by Equation 3-6.

Guidelines for selecting s and m for jointed rock masses are given in Table 3-1.

The categories in this table are determined by the rock type and the conditions of
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Table 3-1

APPROXIMATE CORRELATION BETWEEN ROCK MASS QUALITY AND STRENGTH CONSTANTS

Rock Mass Approximate CSIR NGI S

m Value as Function
of Rock Type

Quality Joint Spacing Rating Rating Value A B c D E

Excellent >3 m (10 ft) 100 500 1 7 10 15 17 25
intact

Very good 1-3 m 85 100 0.1 3.5 5 7.5 8.5 12.5
interlocking

Good 1-3m 65 10 0.004 0.7 1 1.5 1.7 2.5
slightly
weathered

Fair 0.3-1m 44 1 104 0.14 0.2 0.3 0.34 0.5
moderately
weathered

Poor 30-500 mm 23 0.1 10-3 0.04 0.05 0.08 0.09 0.13
weathered

with gouge

Very poor < 50 mm (2 in) 3 0.01 0 0.007 0.01 0.015 0.017 0.025
heavily
weathered

Rock Types:

A - Carbonate rocks with well-developed crystal cleavage (dolostone, limestone,

moaw

marble)

Lithified argillaceous rocks (mudstone, siltstone, shale, slate)

Arenaceous rocks with strong crystals and poor cleavage (sandstone, quartzite)
Fine-grained igneous crystalline rocks (andesite, dolerite, diabase, rhyolite)
Coarse-grained igneous and metamorphic crystalline rocks (amphibolite, gabbro,
gneiss, granite, norite, quartzdiorite)

Source: Hoek (11), p. 215.

the rock mass, and selecting an appropriate category is easier if either the CSIR

(12) or NGI (13) classification data are available. The values in this table

should only be used as general guidelines, and they do not replace the need for

testing or other means of assessing the strength parameters more reliably.

In another study of the bearing capacity of jointed rock, a plasticity solution was

obtained which incorporates the discontinuities in the rock mass (14).
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Although this solution was for a strip foundation, it demonstrates the important
effect of jointing. The strength of the intact material was determined by the
Mohr-Coulomb criterion, with strength parameters c, and ¢,. Shear failure along
the joints also was determined by the Mohr-Coulomb criterion with parameters ¢j and
¢j. The joints were assumed to be closely spaced (relative to the foundation
width, B) and parallel, being inclined at an angle w to the vertical. The results
of this analysis for a range of cj/cy and w, with ¢r = ¢35 = 35°, are given in
Figure 3-6. The horizontal line for Cj/cr = 1 at the top of the figure gives the
bearing capacity without any weakening from discontinuities. For comparison, the
uniaxial compressive strength is also shown at the bottom of the figure. It can be
seen that, for low and high values of w, the discontinuities do not cause a very
large loss of bearing capacity but, between these limits, the reduction can be
large. The vertical drop for w = 35° when Cj/Cr = 0 occurs because no load can be
applied to a purely frictional interface if the angle of obliquity is greater than
the friction angle. The other kinks in the curves arise from changes in the mode

or sequence of plastic regions in the solutions.

The results of Figure 3-6 apply equally well to negative values of w. The effect
of more than one set of discontinuities has not been studied, but there are no
theoretical difficulties to such an extension. In general, each additional set
will cause further lowering of the bearing capacity, although not necessarily to a
great extent. For example, the solution for the two sets w = 0° and 90°, with
Cj/cr = 0, is indicated in Figure 3-6, and gives a value only slightly below that

for the single set w = 90°.
The results in Figure 3-6 are for zero surcharge but, by the following transforma-
tion, the effect of surcharge can be included. Consider the case with ¢, = ¢j = ¢

= 35°, discontinuity cohesion = cj rock material cohesion = c4, and surcharge =

q. For this case, the bearing capacity will be:

Qult = Negley + q tang) + q (3-7)

in which N.g = bearing capacity factor from Figure 3-6 using Cj/cr modified for the

surcharge as follows:
(Cj/cr)q = (Cj + q tang)/(cy + q tang) (3-8)

As mentioned previously, Figure 3-6 applies only for plane strain, but the trends

in behavior and the general conclusions implied should also be true for the case of
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loading applied over a circular area.

Side Resistance

The mechanism of side resistance development in rock sockets is complex and
includes both adhesion and friction effects, as well as dilatancy that may
accompany shearing of a roughened interface. Very high normal stresses may develop
between the shaft and surrounding rock mass, chiefly as a result of dilation at the
interface (3, 15), but also may develop from the effect of Poisson’'s ratio and the
compressive axial stresses in the shaft. 1In a rock mass that is capable of
sustaining these high radial stresses, large shear stresses will develop along the

cylindrical interface of the shaft.

To predict the side resistance of a rock socket, a constitutive model for interface



sliding is required which incorporates the coupling of the shear and normal modes
of displacement (e.g., 16, 17). With such a model, the development of side
resistance from initial loading until full slip of the shaft can be examined.
However, these models require, as input data, accurate numerical values for
parameters such as the shear and normal stiffness, cohesion intercept and friction
angle, and some measure of the dilatancy and perhaps strain softening. Most of
these parameters are not measured routinely either in laboratory or field tests.
While the constitutive models may give good insight into the basic mechanism of
shear failure, including the progressive development of slip along the shaft, they

are not incorporated easily into engineering practice.

The results of most field tests on shafts and direct shear tests in the laboratory
are usually summarized in the form of a unit side shear stress. For a load test on
a shaft in the field, this stress is obtained by dividing the total force carried
in shear along the shaft by the side area of the shaft. Values at peak and
residual shear load are quoted commonly but, because of the definition used, they
are average values which do not account for the distribution of shear stress along
the shaft. For short, rigid shafts, this averaging process will not be important
because the stress state will be relatively uniform throughout the loading. The
unit side shear resistance corresponding to the peak shaft load is sometimes

called, inappropriately, the bond strength of the interface.

Values of the unit side shear resistance have been measured in field and laboratory
tests and have been summarized in (5, 15, 18). To date, the most comprehensive
summary of the available data is given in (19), including critical evaluation of
the available test data on the basis of test method, socket roughness, and
reliability and type of data recorded. The suggested correlation (19) between
expected unit side shear resistance, 7.y, and uniaxial compressive strength, q,

for most sockets is presented as:

Tmax du

- 1.42 (—) /2
)

) (3-9)

a a

in which p; = atmospheric pressure. Particularly rough sockets, defined as those
having grooves or undulations of depth greater than 10 mm (0.4 in) and width
greater than 10 mm (0.4 in), at spacings between 50 mm (2 in) and 200 mm (8 in),
were found to be stronger, and the correlation with uniaxial compressive strength

was suggested as:



_i-

1/2

du
=1.9 (—) (3-10)
Pa

Pa
The data from which Equation 3-9 was deduced have been plotted in Figure 3-7. It
can be seen that Equation 3-9 is a reasonable fit to the data; however, it does not

represent a lower bound to all data points. A lower bound to most of the observed

data was suggested earlier (20) and is given by:

Tmax - qu 1/2
¢ Pa )= b (Pa)

(3-11)

in which b = 0.63 to 0.95. A curve with b = 0.63 also is plotted on Figure 3-7.
For design purposes, a conservative estimate of the peak side resistance could be
evaluated in most cases using Equation 3-11 with b = 0.63. A conservative approach
also is warranted for smooth wall sockets constructed under slurry. However,
values of the average stress, Tpgy, in excess of 0.15 q; should only be used when
they are demonstrated to be reasonable by a load test, local experience, or
adequate in-situ testing. After selecting a suitable value for 7,4, the peak side

resistance then is:

Psf = Tnax As (3-12)
in which Ag = area of the socket sidewall.

Relationships as shown in Equations 3-9 to 3-11 are appealing to the designer,
because of their succinct form and dependence on a single, easily measured index
property (q,). However, they can be misleading because: (1) they try to correlate
a simple rock property (q,) with the mechanical performance of a complicated
shaft-rock system, and (2) they are probably only applicable to relatively uniform
sound rock. In an attempt to extend the correlation to weathered and poor quality
(highly jointed) rock masses (15), an additional empirical factor has been
introduced which is based on the parameter ap, the ratio between the rock mass

modulus and the modulus of the intact rock material.
In some cases encountered in practice, the concrete may have a lower compressive

strength (fé) than the intact rock (q). For these cases, the average bond

strength is governed by the concrete, being approximately equal to 0.05 fé.
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AXTAL UPLIFT CAPACITY

Socketed foundations often are used to resist uplift loads, and the uplift capacity
is developed from both side and tip resistance. Tip resistance requires the
development of a concrete-to-rock tensile bond at the shaft tip. For the ideal
case, this tip resistance would equal the tensile strength of the weaker of the
rock or concrete, multiplied by the tip area. However, considering the typical
construction problems associated with cleaning out the bottom of a socket hole, it

is prudent to disregard the tensile resistance developed at the tip.
The side resistance develops from socket shear stresses, as described previously.

With compression sockets, there is a positive Poisson’s ratio effect, resulting in

lateral expansion of the shaft. In tension sockets, the Poisson'’s ratio effect is
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negative, resulting in lateral contraction of the shaft. 1In the following
sections, it will be shown that the effect of Poisson’s ratio of the shaft material
is important only in shafts which are relatively flexible, and it is unimportant if
the shaft is relatively rigid. 1In Section 4, itkwill be demonstrated that a shaft
is effectively rigid whenever the ratio, (Ec/Er)(B/D)Z, is greater than about 4.
For these cases, the behavior in uplift will be the same as that in compression.
For compressible or extensible shafts, it may be prudent to reduce the unit side
shear resistance in uplift below that for compression. Based upon examination of

elastic solutions, a reduction of up to 30 percent has been suggested (21).

LATERAL CAPACITY

The lateral capacity of shafts socketed into rock has received very little
attention in the literature. Perhaps the reason for this is that the lateral
design is governed largely by displacement considerations, and therefore the
capacity has been assigned lesser importance. Regardless of the reason, reliable
evaluation of the lateral capacity still is important, if only to determine the
likely margin of safety existing at working load levels. The problem is very
difficult to solve theoretically, which also may account for the lack of published

work in this area.

An approximate theoretical approach for estimating the ultimate lateral capacity is
presented here. It is assumed in the following that the shaft section has
sufficient moment and shear capacity to resist the applied loading, and ultimate
failure of the shaft occurs when the surrounding rock mass is not able to sustain
any further lateral loading, similar to the so-called "short pile" failure mode
(22). This assumption must always be checked; once the limiting state of stress
acting on the shaft has been determined, then the calculated maximum bending moment
and shear force in the shaft should be compared to the capabilities of the
reinforced concrete section. If either of these calculated values exceeds the
section properties, then failure will be governed by the strength of the shaft
itself.

To determine the ultimate lateral loads acting on a "short" shaft, the distribution
of the limiting reaction (force per unit length acting on the shaft) is required.

This may be evaluated as follows.

When a lateral load is applied at the rock mass surface, the rock mass immediately
in front of the shaft will have nearly zero vertical stress, while horizontal

stress is applied by the leading face of the shaft. Ultimately, the horizontal



stress may reach the uniaxial compressive strength of the rock mass and, with
further increases in the lateral load, the horizontal stress may decrease as the
rock mass softens during post-peak deformation. Large lateral deformations may be
required for the rock mass at depth to exert a maximum reaction stress on the
leading face of the shaft. Therefore, it is reasonable to assume that the reaction
stress at the rock mass surface, in the limiting case of loading of the shaft, is
zero or very nearly zero as a result of the post-peak softening. Along the sides
of the shaft, some shearing resistance may be mobilized, and this is likely to be

on the order of the unit side resistance under axial compression, Tp,x.

At greater depth, it is reasonable to assume that the stress in front of the shaft
may increase from the initial in-situ horizontal stress level, opj, up to the limit
stress, pp, reached during the expansion of a long cylindrical cavity, i.e., the
plane strain condition will apply. Behind the shaft, the horizontal stresses will
decrease and, after tensile rupture of the bond between the concrete and the rock
mass, the horizontal stress will reduce to zero. At the sides of the shaft, some
shearing resistance also may be mobilized. Therefore, at depth, the ultimate force

per unit length resisting the lateral loading is likely to be on the order of B(pry,

+ Tax) -

Closed form solutions have been presented for the limit stress developed during the
expansion of a long cylindrical cavity in an elastoplastic, cohesive-frictional,
dilatant material (23). This limit stress, pjy, may be determined from the

following parametric equations in the nondimensional quantity p:

2,

opi * ¢ cotgy (Iqu; 11) (Tp™ - Zp) (3-13)
and

p = (PL+ cy cotpy) / (oRr + ¢ cotd ) (3-14)
in which

T =2(1 + i 3 (3-15)

2=2QG f ﬂ) (3-16)



op = [(ﬁ%) (opi + cp cotér)] - ey cotéy (3-17)

a=1/M (3-18)

B =1/N (3-19)
l+a

n-1% (3-20)
1+ sinmp,

M= 1—_-351;; (3-21)
1 + sing,

N = m‘; (3-22)

A - vy)(l + MN) - vie(M + N)
X = MN

(3-23)

and Gy = shear modulus, v, = Poisson's ratio, cy = cohesion intercept, ¢, =
friction angle, and ¥, = dilation angle of the rock mass. The rock mass is assumed
to obey the Mohr-Coulomb failure criterion and dilatancy accompanies yielding,

according to the following flow rule (24):

(‘:'3P
— = -M (3-24)
€1P

in which élp and €3P = major and minor principal plastic strain increments,

respectively.

In most practical cases, the in-situ horizontal stress, opi, will be small compared
to the cohesion, cy, and therefore Equation 3-13 may be simplified slightly by
substitution of opy = 0. For convenience, solutions for the limit pressure py, have
been plotted in Figure 3-8 for selected values of vy, ¢y, and ¥,. The central
vertical axis on each plot indicates the ratio of the plastic radius at the limit
condition, R, to the cavity radius, a. These charts may be used by entering with a
value of G/(opj + cy cotd,) and working clockwise around the figure, determining in
turn values of R/a and p = (pp, + ¢ cotg)/(op 4+ ¢ cots), from which the limit

pressure piy, can be calculated.
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One final problem remains, and that is determining the depth at which this limit
stress is mobilized. 1In an earlier study (25), it was suggested that, in a purely
cohesive material, this depth would be about three shaft diameters (3B). 1In the
absence of any other data, this suggestion will be adopted. Therefore, the
proposed distribution of ultimate force per unit length resisting the shaft is as

shown in Figure 3-9.

The ultimate lateral force that may be applied for the conditions given above can

be approximated by:

(p1, D/6 + TpaxB)D (for D < 3B) (3-25a)

Hyle

I

Hyie (pL/2 + ?max)SB2 + (pL, + Tpax)(D - 3B)B (for D > 3B) (3-25b)
The maximum bending moment in the shaft then is calculated from Hyj¢ and the
reaction distribution shown in Figure 3-9. 1If the lateral loading consists of a
horizontal force, H, and an applied moment, M, then for purposes of calculating an
appropriate bending moment distribution, these may be represented by an equivalent
force of the same magnitude, but applied at a height, e = M/H, above the rock mass

surface.

The theoretical approach suggested above (Equation 3-25) may be used to calculate
the ultimate lateral load for a rock-socketed shaft if suitable data are available
for the rock mass strength and deformation parameters cy, ¢y, ¥y, Tmax, Gy, and
V. Methods for determining appropriate values for all of these have been
described previously in this section and in Section 2. This method for predicting
the ultimate capacity should be used with caution because it has yet to be tested
against field data. Note also that the dilation angle may be influenced by the
construction method. For example, with a smooth wall socket constructed under a
heavy slurry which could leave a slurry "cake" on the socket wall, the dilatancy

may be minimal and the dilation angle could approach zero.

TORSIONAL CAPACITY

Almost all shaft foundations loaded laterally will also be subjected to a degree of
torsional loading because of the eccentricity of the applied loading. The
torsional loading mode can be particularly significant for single pole transmission
line structures. However, to calculate the torsional capacity of these
foundations; the lateral and torsional modes of behavior are considered to be

uncoupled so that the lateral loading has no influence on the torsional capacity
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and vice versa. Because of the unknown significance of any interaction between
these modes, conservative factors of safety are recommended for the design of

shafts subjected to combined lateral and torsional loading.

The development of the maximum torsional resistance of the foundation involves a
complicated interaction between the concrete-rock bonding at the sidewalls and at
the tip, the roughness of the interface, and the relative stiffness and strength of
the concrete and surrounding rock mass. Assuming that the circular shaft section
is able to sustain all possible applied torques, failure will be initiated by
rotational slip at or close to the interface between the concrete and rock. This
failure will begin near the surface of the rock mass and progress down the shaft.
This progression will be rapid in the case of a torsionally rigid shaft, in which
case the peak torsional shear resistance will be mobilized almost simultaneously
everywhere along the shaft. For more flexible shafts, the progression of slip down
the shaft will occur more slowly, and the situation may arise where the interface
near the top of the shaft has reached a residual condition before the bottom of the
shaft has reached a peak. 1In this case, the peak applied torque will be some

average function of the peak and residual torsional shear behavior at the interface.

The authors have been unable to find any recorded instance in the literature where

torsional load tests on rock-socketed piers have been conducted to failure. To be



able to estimate the torsional shaft capacity, data on interface shear strength
obtained from axial load tests will have to be utilized. As in the case of axial
uplift, it will be prudent to ignore any torsional shear resistance developed at
the tip of the shaft, because of uncertainties with regard to the conditions at the
bottom of the socket at the time of concrete pouring. On this basis, the maximum

torque that may be applied to the foundation, Tyjt, can be calculated from:
Tult = TmaxAsB/2 (3-26)

in which Ag = area of the socket sidewall. For design purposes, values for the
unit side resistance, Tp,y, may be obtained as previously. The maximum torque
calculated by Equation 3-26 should also be compared with the torsional capacity of
the circular shaft section, to check whether structural failure is likely to occur

before failure at the concrete-rock interface.

SUMMARY

Methods for estimating the axial, lateral, and torsional capacity of a cylindrical
shaft socketed into a homogeneous rock mass have been reviewed, and some new
techniques have been presented. These techniques have been based on relatively
simple models of the strength of rock masses and concrete-rock interfaces and,
where possible, they have been supported by field test data. The use of these
methods for layered rock masses can be approximated by simple summations over the

respective layer depths.

Each loading mode has been examined separately, assuming that failure occurs in the
rock mass or at the rock-concrete interface. Checks always should be made to
ensure that failure is not initiated first in the concrete member. Any possible
interaction between modes of loading has been ignored specifically. If these
techniques are to be used in the design of shafts subjected to combined loading,

conservative factors of safety for each mode should be adopted.
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Section 4

IOAD-DISPLACEMENT RESPONSE OF AXTALLY LOADED SHAFTS

Socketed drilled shafts must satisfy the same criteria as other types of
foundations, including adequate stability and tolerable deformations. To develop
more rational design methods, a number of workers have devoted considerable
attention to the analysis and testing of this type of foundation (e.g., 1 through
23). A detailed review of this literature has been done (16). On the basis of
empirical evidence, recommendations have been made for the allowable stresses that
may act on the tip and side of these shafts (e.g., 3, 23). Methods for estimating

settlements at working loads also have been discussed (e.g., 3, 15, 17, 18).

In practice, the design of a socketed shaft commonly is governed by displacements,
rather than by stability requirements. Most of the techniques proposed for the
calculation of shaft displacements are based on the theory of elasticity. It has
been usual to assume that the foundation is essentially a cylindrical elastic
inclusion within a surrounding rock mass, as shown in Figures 4-1 and 4-2. 1In a
recent study, the possibility of slip occurring at the interface between the shaft
and the rock mass also was included (17, 18). From these studies, design charts
have been prepared for the computation of shaft settlements under compression

loading.

In this section, a simple method for computing the load-displacement behavior of a
rock-socketed shaft is presented. Approximate analytical expressions are developed
to describe the response of a shaft to axial compression or uplift loading.
Separate expressions are developed for perfect interface bonding (no slip) and for
slip along the entire cylindrical interface. These expressions are in general
agreement with the results of more complicated numerical analyses of the complete
problem, which include interface slip. The simplicity of these approximate closed
form expressions makes them attractive for design purposes. For most practical
problems, they avoid the need for a sophisticated numerical analysis or the need
for a large number of chart solutions to cover the many variations in geometric and

material parameters involved.

The summary of this section presents convenient flow charts for the developed
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solutions to assist in locating the appropriate expressions for a particular design

case.

LOAD TRANSFER MECHANISMS

Compression Loading

When a socketed foundation is loaded in axialvcompression, support is provided by
shear transfer along the socket wall and vertical stress transfer at the tip of the
shaft. The distribution of the load between side and tip resistance is a function
of the socket geometry, relative stiffness of the shaft and rock mass, socket
roughness and strength, and foundation settlement. When relatively small loads are
applied, the rock socket behaves essentially in a linear manner, and the load
transfer can be computed using the theory of elasticity. This linear behavior is
illustrated in Figure 4-3 by the line OA. As the load is increased to point A in
Figure 4-3, the shear stress at some point along the interface will reach the shear
strength, and the socket "bond"” will begin to rupture and relative displacement
(slip) will occur between the foundation and the surrounding rock. As the loading
is increased further (beyond A), this process will continue along the shaft, more
of the shaft will slip, and a greater proportion of the applied load will be
transferred to the tip of the shaft. If loading is continued, eventually the
entire shaft will slip (point B); beyond this point, a greater proportion of the
total axial load will be transmitted directly to the tip.

In field studies involving compression loading, it was shown (3, 20) that slip can
occur within the working load range of the shaft. As long as an adequate factor of
safety on the tip resistance is maintained, it may be reasonable and economical to

design these foundations for the partial or full slip conditions.

Clearly, it is desirable to be able to predict the entire load-displacement
behavior of a shaft and, in the case of compression loading, to be able to estimate
the proportion of the applied load transmitted to the tip. Prediction of the full
load-displacement curve, including progressive slip (region AB on Figure 4-3),
requires the use of numerical techniques. However, for design purposes, the
initial linear elastic response (OA) and the full slip condition (the region beyond
point B) provide good bounds on the overall shaft behavior. Approximate analytical

solutions for the bounds are given in this section.
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Uplift Loading

The manner in which axial uplift loads are transmitted to the rock mass depends
upon the load magnitude and the way in which the load is applied to the socket.

Two particular loading cases can be identified. In one case, the uplift load is
applied to the butt of the shaft, as shown in Figure 4-2a. This would be the usual
case in practice. The second involves a socket being pulled upwards from the tip,
as shown in Figure 4-2b. In practice, this loading could develop by casting a
shaft onto a plate located near the bottom of the socket, and attaching to this
plate a vertical rod passing through the concrete shaft to the surface. To ensure
that the uplift load is first applied to the tip, the rod connecting the base plate
to the surface should not be cast directly into the concrete but should pass
through a sleeve. In terms of the stiffness of the foundation system, there may be

some advantage in this arrangement.

If the uplift load is applied directly to the tip (Figures 4-2b, 2c¢), then
compressive axial stresses will develop in the shaft. Because of the Poisson'’s
ratio effect, compressive radial stresses will be induced at the interface between
the shaft and the rock mass. These compressive stresses will tend to enhance the
frictional component of the side shear resistance of the shaft. If dilation also

occurs at the interface as the shaft slips relative to the rock mass, further
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compressive radial stresses will be generated. It is possible that, with this tip
loading arrangement, the load-displacement relationship for the shaft may take the
form shown in Figure 4-3. However, if no dilation occurs at the interface, or if
it ceases to occur after some amount of slip, the uplift load-displacement curve

eventually will be horizontal.

Where the uplift load is applied directly to the butt, the axial stresses in the
shaft will be tensile and, because of the Poisson's ratio effect, the radial stress
changes at the interface also will be tensile. This loading will tend to reduce
the frictional component of side shear resistance and any beneficial effects that

may arise from dilation at the interface.

In principle, some resistance to uplift loading also may be provided in a
"complete" socket by the tensile strength of the interface between the tip of the
shaft and the rock mass. However, in practice it is prudent to ignore this
component of resistance because of the uncertainty about "perfect clean-out" of the
socket at the time that the concrete is placed. It is usual to design these

foundations to resist uplift loading on the basis of a "shear only" socket.

PROBLEM DEFINITION

The problem analyzed is that of axial loading of a socketed shaft, with either a
"complete" or "shear" socket, as shown in Figures 4-1 and 4-2. The concrete shaft
is modeled as an elastic cylindrical inclusion, with Young's modulus E. and
Poisson’s ratio v, , embedded in an elastic rock mass. The shaft has depth D and
diameter B. The rock mass surrounding the shaft to a depth D is homogeneous with
Young’s modulus E, and Poisson’s ratio v,. Beneath the shaft tip, the rock mass
has Young’s modulus Ej}, and Poisson’s ratio vy. For compression, a vertical load,
Q¢, is applied to the shaft butt and is considered to be distributed uniformly so
that the average applied axial stress is ogp = AQC/WBZ. For uplift, the load may be
applied either at the shaft tip or butt. '

An elastic model for the shaft is consistent with current structural engineering
practice. If the shaft is reinforced concrete, then E, should be assigned the
value of the equivalent section modulus. An elastic model to represent the
mechanical behavior of the rock mass is a simplification of reality, and the
selection of suitable properties to characterize the mass is a matter where
considerable judgment and experience are required. Allowance must be made for the
discontinuous nature of most natural rock masses. Modulus values determined from

laboratory testing of intact core specimens are generally considered inappropriate,



because they normally overestimate the stiffness of the discontinuous mass.
Suggested methods for determining representative elastic properties of the rock

mass were described in Section 2.

Consider now a horizontal slice through the shaft, with the interface and rock mass
at depth z, as shown in Figure 4-4. For clarity, the interface at r = B/2 has been
"exploded"” to show the stress components more clearly. It is assumed that the

interface has zero radial thickness.

The symbols (ug, wg) and (uy, wy) will be used to denote the radial (u) and
vertical (w) displacements of the concrete shaft and rock mass, respectively, at
radius B/2 (i.e., the interface) and depth z. Downward vertical and outward radial
displacements are positive. Symbols o4, 0,, and 7 (or r,) denote the radial,
vertical, and shear stresses acting at the interface, as shown in Figure 4-4.

Compressive normal stress is positive.

The analysis of two different stages in the loading history of the shaft will be
considered. Initially, perfect contact (no slip) along the interface will be
analyzed. Then slip between the shaft and rock mass along the full length of the
interface will be examined. The former corresponds to OA in Figure 4-3, while the

latter corresponds to the region beyond point B.

LINEAR ELASTIC BEHAVIOR

The approximate analysis for linear elastic behavior follows that for the
deformation of vertically loaded piles in soil (24) and the behavior of resin-
grouted anchor bars in a rigid rock mass (25). Perfect bonding is assumed along

the shaft-rock mass interface, so that the following conditions apply:

up = ug (4-1)
and

Wy = W ' (4-2)
Under an applied axial load, the displacements in the rock mass are predominantly
vertical, and the load is transferred from the shaft to the rock mass by vertical

shear stresses, with little change in vertical normal stress in the rock mass

(except near the tip of a complete socket). The pattern of deformation around the
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Figure 4-4. Exploded View of Horizontal "Slice" Through Socketed Shaft

shaft may be visualized as an infinite number of concentric cylinders sliding
inside each other (26). For vertical equilibrium, the magnitude of the shear
stress on each cylinder must decrease with the surface area of the cylinder. If
the shear stress at depth z on the shaft is r(z) at radius rg (i.e., B/2), then

the shear stress at radius r and depth z is given by:

T0(z) ro

pa 2 e (4-3)

The shear strain in the elastic rock mass is:

(4-4)

<
I
ol

in which Gy = E/[2(1 + v4)] is the shear modulus of the elastic rock mass. Since
the major component of rock deformation will be vertical, the shear strain is

approximated by:
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in which w4 is the vertical displacement of the rock mass.

If it is also assumed that at a radius R, the vertical displacements vanish, then

it can be shown that the shaft displacement>at depth z is given by:

R TO(Z) Yo TO(Z) rO
wr(z) = fro(T) dr = ——— In[R/T,] (4-6)

From a study of finite element predictions of pile behavior, it was deduced

empirically (24) that a suitable value of R was given approximately by:
R D
G =250 - vy () (4-7)
o o

This expression for R provides good predictions of the axial displacements of
slender piles in relatively soft soils. As will be shown later, the same
expression gives reasonable predictions of the displacements for much stubbier

shafts in stiffer rock masses. Therefore, Equation 4-6 can be written as:

7'o(z) ro ¢ To(z) B¢

wy(z) = G, = 2%y (4-8)
in which
¢ = In[2.5 (1-vy) D/xy] = In[5 (l-vy) D/B] (4-9)

Because there is mno slip at the interface, Equation 4-8 also gives the vertical

displacement of the shaft, wg.

In developing the general solution for shaft displacements, compression or
extension of the shaft under axial load will be taken into account. If the shaft
is treated as a free standing column, subjected to known loading, then the axial

strain at any level down the shaft is:

€= - — = —— (4-10)



with compression positive. The axial force Q will vary along the length of the

shaft as load is shed into the surrounding rock mass, so that:

= -1 B 1,(2) (4-11)

SIS

Finally, substitution of Equations 4-2, 4-8, -and 4-11 into 4-10 yields the

governing equation for shaft displacements as:

d2wc
= u2w, (4-12)
az2
in which
2_ (2, (D2 .
w? = G G (4-13)
and
A = Eo/CGy (4-14)

This differential equation may be solved to give w. in terms of hyperbolic sine and

cosine functions of the depth, z, as given below:

we(z) = A sinh[pz] + C cosh[pz] (4-15)

Substitution of the appropriate boundary conditions into Equation 4-15 allows the

constants A and C to be determined. Some particular cases are considered below.

ELASTIC SOLUTIONS

Complete Socket Under Compression Loading

When the shaft tip bears directly on the bottom of the socket hole, a contribution
to the shaft settlement will arise from the displacement of the rock beneath the
tip (Figure 4-1la). This case can be approximated as a rigid punch acting on the
surface of an elastic half-space with Young'’s modulus E}, and Poisson'’s ratio vy,
To retain generality, the elastic rock mass below the shaft tip may be different

from that surrounding the shaft. The tip displacement is given by (e.g., 27):
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Qtip (1 - vp)
Vet T T 6y B (4-16)
in which Gy = Ep/[2(1 + vp)] is the shear modulus of the elastic material beneath

the shaft tip.

If this equation is used as one of the boundary conditions for the shaft, then it

is found that the elastic settlement at the butt of the complete shaft, w., is

given by:
4 1., ,20, ,tanh[uD]
Gy B wg 1+ (l - Vb) (wkf) (B ) ( uD )
= (4-17)
2Q 4 1 2r, 2D, ,tanh[uD}
o G @+ 6D & ERED
and the proportion of the applied load transmitted to the tip is:
4 1 1
Qi T @ Coosnrey
= (4-18)
@ ~ &, L, 2% 2D,  taohsb]
G50 @+ ¢ G YD
in which
€ = Gy/Gp (4-19)

The solution given in Equation 4-17 has been plotted in Figure 4-5 for cases where
vy =vp=0.25 and E, = E,. A number of values of the modulus ratio, E /E., and
the slenderness ratio, D/B, are shown. Also plotted are available finite element
method (FEM) solutions (15). The general agreement between the two solutions is
reasonable and could be considered conservative and satisfactory for most design

purposes.

Shear Socket Under Compression Loading

‘For a shear socket under compression loading (Figure 4-1b), the boundary condition

at the shaft tip is one of zero axial stress. For this case, the settlement at the

shaft butt is given by:

Er B we 1. Er 2 cosh[uD]

- @ & G Gienia] (4-20)
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Figure 4-5. Elastic Settlement of Complete Rock Socket

This solution is plotted in Figure 4-6 and compared with finite element results
(15). The accuracy of the approximate equation (4-20) is clear, particularly at

larger values of the modulus ratio (E¢/Ey).

Uplift Loading Applied to Shaft Butt in Shear Socket

For this case (Figure 4-2a), the uplift displacement is simply the reverse of the
settlement of the same type of socket when subjected to a compressive load equal in
magnitude to the uplift load. Therefore, the magnitude of the uplift displacement

is given by Equation 4-20, with wy = w, and Q, = Q..

Uplift Loading Applied to Shaft Tip in Shear Socket

For this case (Figure 4-2b), the appropriate boundary condition is zero axial
stress at the shaft butt, which leads to the following:

Eyr B wy E, 2 1

1
—_— = . (D) (=) ) (———— 4-21
o @ & G Gy (4-21)
in which Q¢ is the uplift load applied at the shaft tip, which applies a
compression to the tip and therefore is given a positive sign, while the negative

sign indicates an upward vertical displacement.
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Figure 4-6. Elastic Settlement of Shear Socket

The displacement of the shaft tip, wyt, may be also of interest and is given by:

Br B wur cosh{uD]

1 2
me " @ &GP i) (4-22)
This equation has the same form as Equation 4-20, for a shear socket under
compression loading, and could have been predicted by the reciprocal theorem of

elasticity.

Equations 4-21 and 4-22 have been plotted in Figures 4-7 and 4-8, respectively. 1In
general, the butt displacement for a shaft loaded in uplift at its tip is less than
the displacement of the same type of shaft, subjected to the same load applied at
its butt (Compare Figures 4-6 and 4-7.). It is also interesting to note that, for
a shaft loaded at its tip, the displacements at the butt become smaller as the
ratio Eo/Ey, is reduced, but the displacements at the tip become smaller as E./Ey is
increased. However, the difference between butt and tip displacements is only

significant for very compressible or extensible shafts.

Shaft Jacked Upward

A shaft also can be loaded by a jacking force acting on the shaft tip and the
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Figure 4-8. Elastic Uplift Displacement of Tip of Shaft Pulled Upward from Tip

bottom of the socket hole (Figure 4-2c). This case is of interest because this
type of loading arrangement has been used for test loading of sockets in the field
(e.g., 9) and for improving the performance of prototype shafts carrying
compressive working loads (e.g., 8). Although there is no net load applied to the
shaft-rock mass system, the shaft tip will move and its displacement can be

considered as the resultant of two components: (1) an upward displacement because
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of the upward jacking force applied to the shaft tip, and (2) a downward
displacement because of the jacking force applied to the rock mass beneath the
shaft tip. For simplicity, it is assumed that the void occupied by the jack

is of infinitesimal thickness, so that the net displacement of the shaft tip is

obtained by simple superposition of the two effects described above.

The upward displacement is the same as that ﬁredicted by Equation 4-22. To
calculate the downward displacement, it is assumed that the underside of the jack
acts like a rigid punch on the surface of an elastic half-space with Young's
modulus Ep and Poisson’s ratio vy. When these two components are combined, the

resulting displacement of the shaft tip is given by:

ExBuce 1 By 2 cosh[uD] 1 Ey
- 2y (—y (L. (coshipD] Iy (= _ 2 -
3 < T (ﬂ) (Ec) (pB) (sinh[pD]) + (2) (Eb) (1 - vp9) (4-23)

Similarly, the shaft butt displacement is given by:

E

1 1 r 2
EEEETﬁET) + (5) (Eg) (1 - vp9) (4-24)

EeBie 1. Er
7 = " D) (Ez) (;E) (

To illustrate this behavior, the solutions for shaft butt and tip displacement have
been plotted in Figures 4-9 and 4-10 for cases where Ep/E, = 0.5, 1, and 2. A
negative sign indicates upward vertical displacement. It is evident that, in most
practical cases, the net displacement under this form of loading is downward,

giving a settlement.

ANALYSIS OF FULL SLIP CONDITION

Consider now the case where slip has occurred along the entire length of the shaft,
corresponding to the region beyond point B in Figure 4-3. Within this range,

Equations 4-1 and 4-2 are no longer valid. In the following, a shaft subjected to
compressive axial load is analyzed first; modification of the analysis for tensile

loading then is straightforward.

It is assumed that the shear strength of the interface is given by the Mohr-Coulomb

criterion:

T = ¢ + oy tang (4-25)
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in which ¢ = interface cohesion and ¢ = interface friction angle. As relative
displacement (slip) occurs, the interface may dilate. It is assumed that the

displacement components obey the following dilation law:

= - tany (4-26)

in which 3% = angle of dilation and dot (:) = rate of change (28). For this
particular problem, it is also possible to write Equation 4-26 in terms of the

actual displacement components, so that:

= - tany (4-27)

This type of behavior is illustrated in Figure 4-11. As noted in Section 3, the

dilation angle may be minimized if a heavy slurry is used during construction.

To determine the radial displacements, conditions of plane strain are assumed
independently in the rock mass and in the slipping shaft. The case of compressive
radial stress at the interface is considered first; the case where Poisson’s ratio
effects produce tensile radial stress changes, as in some instances of uplift
loading, will be considered later. The assumption of plane strain leads to the

following equation for the radial displacement of the rock mass:

A+ vy B
up-——— B, (4-28)
T Er 2 r
while for the shaft:
a - vy Ve
B B
uc—-—é'(:——ao’r+“é::—202 (4-29)

The rock mass is considered to behave in a linear elastic manner, even after full
slip has taken place, and therefore the vertical displacement at the interface is

given, as before, by:

1+ vy

Wy = ————Er B ¢r (4-30)
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Figure 4-11. Schematic Illustration of Dilatancy at Shaft-Rock Mass Interface

in which, to sufficient accuracy:

¢ = In[5(1 - v,)D/B]

If the shaft is considered to be an elastic column, then:

8‘[2’
(e]

Oz
Ea

[

and equilibrium of the column requires that:

Yz by
dz B

When Equations 4-28, 4-29, and 4-30 are substituted into the dilatancy law
(Equation 4-27), it is found that:

We = a17 t+ a90, - aszoy

where the compliances aj, a9, and a3 are given by:

4-17

(4-31)

(4-32)

(4-33)

(4-34)



d+vyIB Y

al = Er
L -vedB  (1+wvpB L
a = bty ) )
veB

1
az = (Ec) (——tam/))

Substitution of Equations 4-25, 4-32, and 4-33 into 4-34 gives the following

(4-35)

(4-36)

(4-37)

differential equation which governs the variation of the vertical stress in the

shaft:

in which

Ec.B
a = as¢ Z

™
|

= a3 E¢

and

as = aj + ay

]

as = ag/tan¢g

(4-38)

(4-39)

(4-40)

(4-41)

(4-42)

For a dilatant interface, tany is greater than zero and therefore the coefficients

a and B8 must be positive

The solution of Equation 4-38 takes the form:

A1z

oy, =Ae + C e

Aoz

in which A9 and A9 are given by:

4-18

(4-43)



t 52 1/2
'\1»)‘2 - ',B (ﬂza+ 4o)

The constants A and C are determined from the boundary conditions.

cases are considered below.

FULL SLIP SOLUTIONS

Shear Socket Under Compression Loading

(4-44)

Some particular

For a shear socket under compression loading, the appropriate boundary conditions

are:
o, =0 at z =D
and
o5 = Op at z =0
and therefore the solution is:

Aoz

X
o, = op{Cie 1z Coe }

b B Az B Aoz
T = - @ﬁ{cplael -cg2§e2)
We = -a30z ~ a,c + asr

in which
o - eAzD
ekzD _ ele
¢ = ele
eAzD : eAID

(4-45)

(4-46)

(4-47)

(4-48)

(4-49)

(4-50)

(4-51)

In particular, the shaft butt displacement, w., can be calculated by substituting z

= 0 into Equations 4-47 to 4-49.



Complete Socket Under Compression Loading

The boundary conditions for this case are:
o, = 0p at z =0 (4-52)
and

1 - ubz

Ve = Vet = otip () ()

at z = D (4-53)

Nl g

in which otip is the vertical stress acting at the shaft tip. It has been assumed
that the shaft tip acts like a rigid punch, resting on the surface of an elastic

half-space with Young's modulus E}, and Poisson’s ratio vy,

For this case, the solution is found as:

0y = op©€3e 1% + Ce?2%) + c(Cse 1% + Cee2P) (4-54)
b B XMz B Aoz c B Xz B Aoz
7T =- (57)(C3x1 5 e + Cpro 5 e ) - (5)(Csrq 5 e + Cglo 5 e Y (4-55)
2 2 2 2 2 2
We = -a3g, - asc + asr (4-56)
in which
- - (LT L L2 B 1 A2D .
Cy = (Qz) [4 (1 vy )(Eb) + a3 + 4 aghoBle (4-57)
- Ly = 2y (B 1 A1D .
Cpy = (QZ) [4 (1 - vy )(Eb) + ajz + 4 asiiBle (4-58)
a4
¢ - - g (4-59)
ay
¢ - 5, (4-60)

The proportion of load transmitted to the tip, Utip/ab, is given by:
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9tip o ]
o "%t (op

) (4-61)

in which

(A1 + X92)D

21 = 7 a5(1 - A)B e (4-62)

B 1 A1D B 1 AoD

&y = l[: (l-vbz) (E};) + ag + 7 agiiBle 1= [‘Z{ (1‘Vb2) (Eb-) + a3+ % asijBle 2
(4-63)
83 = a; (20 . 1D (4-64)

Again, the settlement of the butt can be calculated by substitution of z = 0 into
Equations 4-54 and 4-56.

Uplift Loading Applied to Shaft Butt in Shear Socket

In this case (Figure 4-2a), the axial stresses in the shaft are tensile and the
Poisson's ratio effects induce tensile changes in the radial stress acting at the
interface between the shaft and rock mass. The solution for this case can be

obtained by an analysis similar to that for compression loading and is:

0y = op{C7 e™3% - g e*4% (4-65)

T = C;E) {C7 A3 g e?3% . Cg Ay % 4% (4-66)

Wy = 83 05 + ajc - asr (4-67)
in which

Gy = Dy MD | A3Dy (4-68)

Gg = &*30 /(e 4D _ 33Dy (5-69)
and
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B+ (B2 + ba) /2

20

A3, Ay = = -d9, -1 (4-70)

In this case of uplift loading, the applied axial stress oi is tensile and should
be input in Equations 4-65 and 4-66 as a negative quantity. It also should be
noted carefully that this analysis is strictly valid only as long as the radial
stress o, remains compressive. For this condition to be satisfied, the tensile
stress changes produced by the effect of Poisson’'s ratio of the shaft must be
offset by the compressive changes induced by dilation and any initial in-situ

compressive horizontal stress at the interface.

Uplift Loading Applied to Shaft Tip in Shear Socket

In this case, a compressive vertical stress, Otip» is applied to the shaft tip

while the shaft butt is unstressed. The solution is:

Ayz

oz = orip Ggle’3% - 4% (4-71)
otip B A3z B Az
r=(2)09{/\3§e3"\4‘264} (4-72)
Wy = aszoy + ajc - asrt 4-73)
in which
Co = /(e3P . oM4D) (4-74)

and otjp is a positive (compressive) quantity. The displacement of the shaft butt
(wy) and tip (wy) may be obtained by substituting z = 0 and z = D, respectively,
into Equations 4-71 to 4-73.

Shaft Jacked Upward

This case has been described earlier (Figure 4-2c). After full slip has occurred
along the shaft, the rock mass beneath the shaft tip continues to deform
elastically, with appropriate deformation parameters Ey, and vy. For this case, the
stress components along the shaft are the same as those given by Equations 4-71 and
4-72, for a shaft loaded in uplift at its tip. However, the displacement of the

tip is calculated as the resultant of an upward component from the load applied to
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the shaft tip and a downward component from the jacking force loading the rock mass

beneath the shaft tip, i.e.:

. 1 - ubz
Wy = a30z + ajc - asT + otip () (__—Eg—_)B (4-75)

SOME SPECIAL CASES OF FULL SLIP

It is of interest to consider a number of special cases, for which simpler forms of
the analytical expressions can be obtained for full slip behavior. The case where
no dilatancy occurs at the interface is discussed, and the particular forms of the
governing expressions that evolve for purely cohesive and purely frictional

interfaces are presented.

No Dilatancy at Interface

For this condition, the dilation angle 3 is zero and (1/tamyp) becomes infinite.
The governing differential equation for the behavior of the shaft, Equation 4-38,

reduces to:

dzaz do
4F tang, —Z _
2 + ( B ) o 0 (4-76)
in which
Ee
F=vw/[( - v) + (E;) (1 + vy)] (4-77)

This equation has the solution:

0y, = A exp[-4F tang(z/B)] + C (4-78)

in which the constants A and C are determined from the boundary conditions. This

solution is equivalent to that derived previously for a non-dilatant interface (10).

Shear Socket Under Compression Loading

For this case, the boundary conditions are those presented for Equations 4-45 and
4-46 and the solution for o,, 7, and w, becomes indeterminant, except in the case

of a purely cohesive socket, for which only ¢, and r may be found as:
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D - z

Uz=40(B)

and

As oy, approaches 4c¢(D/B), the shaft displacements become infinite.

Complete Socket Under Compression Loading

For the case where the shaft rests on an underlying elastic material, the

solution is:

. —c
F tan¢

o, = (op + ETEEEE) exp[-4F tang(z/B)]
T = (0p F tang + c) exp[-4F tang(z/B)]
and

We = Wg + Wt

where the overall shaft compression, wg, is given by:

1 c B cD
Vg = (E;) {(op + F tan¢) (1 - exp[-4F tang(D/B)]) (4F tan¢) " F tan¢)
and the settlement at the tip (z = D) is:
1 - Vb2
= &) (——) ((0p + w—>7) exp[-4F tand(D/B)] - —o—) =
Vet 2 Ep b " F tang F tang 2
The proportion of load transmitted to the tip is given by:
Ttip Qtip c .
B - e (1 + 535_2553) exp[-4F tang(D/B)] "oTF tand

For a purely frictional interface, these equations reduce to:
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(4-79)

(4-80)

(4-81)

(4-82)

(4-83)

(4-84)

(4-85)

(4-86)



z = ob exp[-4F tang(z/B)] (4-87)

= gy, F tang exp[-4F tan¢(z/B)] (4-88)
%b 1 B
Wg = CE;) (§F_255$) {1 - exp[-4F tan¢(D/§)]) 5 (4-89)
1 - Vb2
Vet = (2) (——=—) lop exp[-4F tal’l<15(1)/13')]) 5 (4-90)

gtip Qtip

%b Qc

= exp[-4F tan¢(D/B)] (4-91)

For a purely cohesive interface, these equations become:

0y = 0y - b4e(z/B) (4-92)
T =c (4-93)
%
ws = () - (F) (D (4-94)
1 - Vb2
= (“) (—5—) {op - be(3 )) 5 (4-95)
and

Otip Qeip e D

on T Qe 1- 4(;3) (® (4-96)

Shear Socket in Uplift

In the absence of dilation, the changes in radial normal stress at the interface
are entirely because of Poisson’s ratio and are tensile. Therefore, if the in-situ
normal stresses on the shaft are insignificant (a conservative assumption), then
the interface can have no frictional component of strength. This implies that, at

slip, the displacements are indeterminant and that o, and 7 are given by:

0y = -bc (D_];_Z) (4-97)
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and

T =C 4-98)

Complete Socket in Uplift

For this case, it is prudent to ignore the tensile tip resistance, and therefore
the solution is the same as for a shear socket. The displacements are

indeterminant and the stresses are given by Equations 4-97 and 4-98.

RIGID SHAFTS

In practice, it is common for the stiffness of the shaft to be larger than that of
the host rock (E. >> E,). Shafts of this type may behave rigidly when subjected to
axial loading and, for such cases, the governing equations presented previously may

be simplified.

Shear Socket Under Compression lLoading

The initial elastic response of this type of foundation is described by Equation
4-20, from which it is clear that the axial stiffness is proportional to tan[uD],

with pD given as:

@2 = L] <EE—:> D2 (4-99)
in which

¢ = In[5(1 - vy)D/B] (4-100)
and

X = E./Gy (4-101)

For small values of uD, the function tanh[uD] is closely approximated by pD, in

which case the elastic stiffness of the shear socket can be approximated as:

Qe

T
ve - CaTvpoBP (o108
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Equation 4-102 will be accurate to within 10 percent whenever uD is less than about

0.5, or whenever:

Ec 3.2
@ G 21 (4-103)

For all practical purposes, Equation 4-103 can be considered as the definition of
rigidity with respect to axial compression. A further implication of shaft
rigidity is that the elastic stress transfer is linear down the shaft, so that the

shear stresses developed at the interface are constant with depth.
If it is also assumed that the shear stress distribution remains constant at full

slip, and that E; >> E4, then the load-displacement relationship for the butt of

the shaft, for a dilatant, cohesive-frictional interface, can be written simply as:

QC B
We = Rl(;ﬁ_ - RZ(E) (4-104)

in which

R1 = (A +vy) (¢ + E_EEE%_EEEE) (4-105)
and
. (1+Vr) -
2= tang tany (E;) (4-106)

Complete Socket Under Compression Loading

For a rigid shaft in full contact at the tip, the elastic stiffness is given by:

Qe 1 m, D EyB
—_—— — EbB + (—s,) (—B) m (4-107)

Ye o @ - wpd

and the proportion of the applied loading transmitted to the tip is:
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4 b

, ) (o

Qtip 1-w" "G
@ Cb . 2D
S —— Vb) (G—r) + (g'_) )

Once full slip of the shaft has occurred, the load-displacement relationship

becomes:
c B

We = R4(WErB) - Rs(3)

in which
RoR3(2D/B)
Rs = R;@p/B) + R1
R3Rj

R4 = R5@0/B) + R

and

7 2 24
R3 = (3) (1-Vb)(E—b)

with the load transmitted to the tip given by:

Qeip _ R Rg (2D/B) nBDc
o ~ R Rz Ry T Ra0/my! Cag

)

in which

Rg = (1 + vy) /(2 tang tanyp)

Uplift Loading Applied to Shaft Butt in Shear Socket

(4-108)

(4-109)

(4-110)

(4-111)

(4-112)

(4-113)

(4-114)

In this case, the elastic response of the shaft butt is given by Equation 4-102.

Once full slip has occurred, the displacement is given by:
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Q

u B
Wy = Rl(m) + R2(-2-) (4-115)

For this case, Q should be given as a negative quantity. A negative value of wy

indicates an upward displacement.

Uplift Loading Applied to Shaft Tip in Shear Socket

The uplift displacement at the shaft butt in this case can be calculated from:

Qu

™
—V;l—l= - (m) ErD (4'1]—6)

in which the negative sign indicates an upward displacement. Qu is the compressive

load applied to the shaft tip to cause the uplift and is assigned a positive value.

After full slip has occurred, the load-displacement relationship becomes:

Qu B
Wa = - RIGE) + Ra() (4-117)

in which R1 and R9 have been defined previously (Equations 4-105 and 4-106).

Again, a negative sign indicates upward displacement.

Shaft Jacked Upward

The elastic displacement at the butt of a rigid shaft loaded in this manner can be

calculated from:

-l —— &) - —— =5 (4-118)

in which P is the load applied by the jack at the shaft tip. Once full slip

occurs, the displacement becomes:

@ -vp?) Er o, Ry

P B
vy = [ ('Et",) ) - 71 (EF)) + Rz(i) (4-119)

T

General Remarks on Rigid Shafts

It is worth noting that, for rigid shafts, the effects of Poisson’s ratio of the
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shaft concrete, v, are negligible. This can be demonstrated by examining the
relationship between the radial and vertical stresses in the shaft at the
interface. It can be shown from Equations 4-28 and 4-29 that, during the elastic

behavior of the shaft, the radial stress is:

(Er/Ec) Ve
or = g% v + (1 - v (Er/Ec)]aZ

(4-120)

For a rigid shaft, E; >> E, and therefore o, << o5, which shows that the radial
stress acting on the interface is negligible. This fact has several important
implications. First, it means that the strength mobilized at the initiation of
slip of the shaft is almost entirely cohesive in nature, because at this stage
there is almost no normal stress acting to generate frictional resistance. Second,
as the shaft slips, the changes in o4 occur almost entirely because of dilation at
the interface. For these reasons, the response of a shaft, employing side
resistance only, is essentially the same in uplift as it is under compression

loading.

By definition, a rigid shaft will not shorten from the applied axial loading, and
therefore the vertical displacements of the butt and tip of the shaft will be the

same.

COMPARISONS WITH FINITE ELEMENT SOLUTIONS

The adequacy of the equations presented above can be demonstrated by comparing them
with chart solutions, obtained using a nonlinear finite element analysis (17, 18).
Comparisons are made for two different cases: the first uses parameters selected to
represent a low relative stiffness of the shaft-rock mass system (D/B = 10, E/E, =
10, Ep/Ey = 1), while the second represents a large relative stiffness (D/B = 2,
E./Ey = 100, Ey/Ey = 1). 1In all cases, the Poisson’s ratio of the rock mass was
0.3 and that of the shaft was 0.15. The interface is assumed to be purely cohesive
and non-dilatant. The predictions of the load-displacement response are presented
in Figures 4-12 and 4-13, and the predictions of the tip load are given in Figures
4-14 and 4-15. The overall agreement between the simple equations presented herein
and the numerical solutions from finite element analysis is very good. However, a

few points are worthy of further mention.
In the strictest sense, the simple Equations 4-17 and 4-83 to 4-85 contain no means

for predicting the load-displacement response between the occurrence of first slip

and full slip of the shaft, but the numerical results indicate that the progression
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Figure 4-12. Dimensionless Load-Settlement Relationships for Cohesive Socket
(Example 1)
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Figure 4-13. Dimensionless Load-Settlement Relationships for Cohesive Socket
(Example 2)

4-31



0.5 /
Ee.ro, By 0
E, ' E,
0.4} | ¥r=vv70.3, »c=0.15
Qtip D/8=10, $=¢=0 o
0.3} . ult slip
0
0.2} /
0
Full slip
QlfF .
. . Equation (4-18)
First shp\ f (elastic)
O O 0—8
OT 1 { 1 ] 1
0 0.5 1.0 1.5 2.0 2.5
0c
7BDc¢

Figure 4-14. load Transmitted to Tip of Shaft for Cohesive Socket (Example 1)
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Figure 4-15. Load Transmitted to Tip of Shaft for Cohesive Socket (Example 2)

4-32



of slip along the socket takes place over a relatively small interval of
displacement. (Finite element predictions of first slip and full slip have been
indicated on Figures 4-12 through 4-15). Therefore it seems reasonable, at least
for most practical cases, to ignore the small region of the curves corresponding to
progressive slip and to assume that the load-displacement relationship is bilinear,
with the slope of the initial portion given by Equation 4-17 and the slip portion
given by Equation 4-83., This is a simplification, but Figures 4-12 and 4-13

indicate that it is reasonably accurate for a wide range of shaft types.

Figures 4-12 and 4-13 also indicate that Equation 4-83 tends to overpredict the
settlement once full slip has occurred. The discrepancies are not large and, from
a design point of view, it is fortunate that Equation 4-83 appears to be
conservative. The overprediction of settlement is worse for the case of a
relatively stiff, stubby shaft (Figure 4-13), and reasons for this can be
suggested. In the derivation of Equation 4-83, it was assumed that the shaft and
its tip could be considered separately. With regard to the structural stiffness of
the overall system, this assumption is likely to lead to greater errors in the case
of stiffer, stubbier shafts because greater interaction may take place between the
shaft and the tip. This interaction will give rise to the transfer of significant
shear stresses on the horizontal plane in the rock mass at the shaft tip. These
shear stresses will tend to constrain the rock mass beneath the shaft tip and
reduce the settlement component of the tip to a value smaller than that predicted

for a rigid punch acting on the surface of an otherwise stress-free half-space.

For design purposes, the simple equations presented above should give a reasonable
first approximation for many shaft-rock mass systems, and therefore should prove to
be convenient in design for carrying out preliminary studies of the effects of
variations in a number of the key parameters. 1In the following, consideration of

some of these effects is presented.

TRENDS IN BEHAVIOR

The comparisons made above between the finite element and closed form solutions
were for cases where the strength of the interface could be regarded as purely
cohesive and non-dilatant, and where the shear strength was unchanged by any slip
produced at the interface. These conditions rarely occur in the field. The
initial "bond" strength along the interface may have both cohesive and frictional
components. Once rupture occurs, it is likely that the cohesive component of the
strength may diminish, dilation will occur, and after sufficient slip has taken

place, the interface shear resistance will become purely frictional and dilation
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can cease.

Purely Frictional Sockets in Compression Loading

Consider the hypothetical case where the resistance along the interface is purely
frictional, with an angle of friction ¢ that remains constant throughout the
loading, and where the shaft tip rests directly on the bottom of the socket. Such
a model will produce conservative predictions, because it corresponds to a shaft
which fits perfectly into the socket in the rock mass, but nowhere along the shaft
is there any bonding between the rock mass and the shaft. It also will be
conservative to assume that initially there is no transfer of normal stress across
the interface between the shaft and the rock and, at least for shallow sockets,
this will closely model reality. Under these circumstances, the entire shaft will
be on the verge of slipping as soon as compression loading is applied to the shaft
butt. A shaft in this kind of socket will exhibit no elastic behavior, but will
slip from the commencement of loading. The load-settlement relationship in this
case is obtained by substituting z = 0 and ¢ = 0 into Equations 4-54 to 4-56. Some
typical solutions have been plotted in Figures 4-16 and 4-17 for cases where E /E,
=10, Ep/Exr =1, vy = v} = 0.3, vo=0.15, ¢ = 30°, and ¢ = 0. Solutions are
plotted for a range of values of D/B and for a number of values of the dilation
angle ¥. Dimensionless settlements are plotted in Figure 4-16 and the proportion
of the applied compression loading transmitted to the tip, Qtip/Qc: is plotted in
Figure 4-17. Also shown is the elastic solution for a perfectly bonded (no slip)
interface. These results indicate that only a small rate of dilation is required
to cause a marked increase in stiffness of the shaft under compression loading. A
dilatancy angle of 3 = 30° produces behavior approaching the stiffness of a fully

bonded (elastic) socket.

If no dilatancy occurs as interface slip takes place (¥ = 0), the response of the
shaft also is linear, but its stiffness is less than that for a fully bonded
socket. The response of this type of shaft to compression loading is predicted by

Equations 4-87 to 4-91, from which the butt displacement, w,, is given by:

Eywe Ey 1

opB - (E:) (4F tan¢) ¢

1 - exp[-4F tang (D/B)]}

E
+ @ a-wnd (EE) exp[-4F tang (D/B)] (4-121)
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Figure 4-16. Settlement of Purely Frictional Socket with Dilatancy
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Figure 4-17. Load Distribution in Purely Frictional Socket with Dilatancy
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This equation is plotted in Figure 4-18 for a number of sockets having the
following properties: Eo/Ey = 10, Ep/Er = 1, vy = vy = 0.3 and v, = 0.15. Results
are given for three different values of the interface friction angle, ¢, and for a
range of slenderness ratios (D/B). It can be seen that the stiffness of most of
these frictional, but non-dilatant, sockets is in the range from about 20 to 40
percent of the stiffness for an equivalent, perfectly bonded, elastic socket. It
is also interesting (and perhaps surprising) to note that there is only a minor
dependence of the stiffness of the non-dilatant, frictional shaft on the interface
friction angle. This behavior can be understood better when the load distributions
predicted by Equation 4-91 are plotted, as in Figure 4-19. For the typical case of
E/Ey = 10 and v, = 0.15, a large proportion of the shaft loading is actually
transmitted to the shaft tip, regardless of the friction angle, and therefore the
predominant contribution to the overall settlement comes from displacement of the
rock mass below the shaft tip. It should be remembered also that the load
transferred to the tip is a function of the modulus ratio, E./Ey, and the Poisson’s
ratio of the shaft material, v.. Increasing E./E, will cause a greater proportion
of the load to be transmitted to the tip, while increasing v, will cause less
because the radial normal stress transmitted across the shaft-rock interface
increases, and therefore the greater will be the proportion of loading carried in
side shear. A comparison of Figures 4-17 and 4-19 demonstrates the significance of
interface dilation on the load transfer in a socket, because the lower the rate of

dilatancy, the more compressive load is transmitted to the shaft tip.

Cohesive-Frictional Interface in Compression Loading

Consider now those cases where cohesion is assumed at the interface, and where the
cohesion remains constant as slip takes place, but no dilation occurs at the

interface (¢ = 0).

Some predictions of the load-displacement response of complete sockets subjected to
compression loading are given in Figure 4-20. The case where E./E, = 100 and D/B =
5 is considered, and typical values of the various parameters that might occur in
practice have been used to add dimensions to the predictions. Curves have been
plotted for sockets in which ¢ = 0, 0.5, and 1 MN/m2 (0, 71, and 143 psi) and ¢ =
30° and ¥ = 0°. For the sockets where ¢ > 0, the response is bilinear, following
first the predictions for a linear elastic (fully bonded) socket and then the
prediction based on the full slip analysis. For the full slip condition, Equations
4-83, 4-94, and 4-95 predict a linear relationship between load and settlement,
with the slope of this line the same as that predicted for a purely frictional

interface (Equations 4-89 and 4-90). This slope is independent of the value of the
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Figure 4-20. Typical Behavior of Cohesive-Frictional Socket

interface cohesion, and therefore the curves corresponding to the three c¢ values

are all parallel.

Also plotted on Figure 4-20 is the curve predicted for the case where c =1 MN/m2
(143 psi) and ¢ = 0°. It can be seen that this purely cohesive socket has almost
the same load-settlement relationship as that of a socket with ¢ =1 MN/m2 (143
psi) and ¢ = 30°, i.e., the behavior once slip has occurred is almost independent
of the value of ¢. It should be noted, however, that this is true only for very
stiff sockets, such as those with E./E, = 100 and D/B = 5, because as the ratio
E./E, becomes large and the slenderness ratio D/B becomes small, the curves for
cohesive-frictional and purely cohesive interfaces are practically the same, i.e.,

the cohesive effects tend to dominate the frictional effects for very stiff, stubby

sockets.

Bounds on Real Behavior in Compression Loading

The analytical solutions presented herein, for the load-settlement response of
socketed shafts in compression loading, assume a cohesive-frictional shear strength

at the socket walls with the possibility of dilatancy contributing to the shear
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resistance. The analysis can only be applied to cases in which the strength
parameters and the dilatancy are considered constant, independent of the magnitude
of the relative shear displacement at the interface. These assumptions are
reasonable for small slip displacements, but they will tend to be unrealistic as
larger slip displacements occur. In particular, it is probable that the cohesive
component of the strength will be diminished after the bond between the concrete
and rock is ruptured. Similarly, it is likely that the tendency for the interface
to dilate with shearing will abate as the shearing progresses. With the present
analysis, it is not possible to model this gradual reduction of cohesive strength
and dilatancy exactly. However, it is possible to use the analysis to produce
bounds on the likely load-settlement response, as illustrated schematically in
Figure 4-21. The analysis assuming ¢ = 0 and ¥ = 0 should provide a lower bound on
the mobilized socket strength and an upper bound on the shaft displacements.
Conversely, with the selection of appropriate values of c, ¢, and ¥, the curve
corresponding to the ¢, ¢, ¥ analysis should provide an upper bound on mobilized
strength and a lower bound on the settlements. The actual load-settlement curve is
likely to fall between these limits; exactly where it falls depends on the
brittleness and the dilatancy of the interface. In an extreme case, if the loss of
cohesive strength is rapid, then a curve like OABC could be observed. If the
interface exhibits a plastic or work-hardening shear response (which is more likely
in well-constructed, dilatant sockets), then the shaft behavior may be more like
that respresented by the curve OAF. At larger displacements, the sockets should

tend toward a purely frictional, non-dilatant behavior.

Cohesive-Frictional Sockets in Uplift

When the shaft is subjected to uplift loads, the tensile tip resistance normally is
ignored. The behavior in this case is illustrated in Figure 4-22 for a relatively
rigid shaft with D/B = 5, vy = 0.25, and interface friction angle ¢ = 30°. It can
be seen that the load-displacement response is initially linear elastic. Full slip
of the shaft occurs when 7 = ¢ and therefore Q, = -nBDc. A negative value of Q
denotes tensile load, and a negative value of w,, denotes an upward displacement.
For uplift conditions, the load to commence full slip is independent of the angle
of friction, because tensile normal stresses are induced at the shaft-rock
interface from Poisson's ratio effects, and therefore the interface initially has

no frictional resistance.
Once slip has commenced, the stiffness of the shaft is a function of the interface

dilation angle, ¥, as illustrated for typical values in Figure 4-22. According to

this simple model, the stiffness corresponding to full slip is constant, which
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Figure 4-21, Schematic Representation of Socket Behavior
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Figure 4-22. Uplift of Relatively Rigid Shaft in Cohesive-Frictional Socket
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follows from the assumption of constant ¢, ¢, and ¥. The slip response is stiffer
for larger values of 3. In reality, the dilation must cease after sufficient slip
displacement has occurred, and ultimately a maximum uplift load will be reached.
The value of this ultimate load is given by Qu = 7BDT 4y, in which 7,y is the peak

unit side shear resistance. In Figure 4-22, the case of T,y = 2c is given.

OVERLYING SOIL LAYER

Consider now the case where a layer of soil overlies the rock and the axial loading
is defined at the surface of the soil, as in Figure 4-23a. To be explicit, only
the case of compression loading will be dealt with here. However, the same

principles would also apply to the case of uplift loading.

In this analysis, it is assumed that the complete distribution of soil shearing
resistance on the shaft is known. The axial displacement, w,, at the groundline
then may be determined after a suitable structural decomposition of the shaft and
its loading, as shown in Figure 4-23b. The portion of the shaft lying within the
soil can be analyzed as a free-standing column subjected to known loading, and the
displacements of point A at the groundline relative to point B at the soil-rock
interface, wpp, can be determined simply. The axial load Q, transmitted to the
level of the rock surface can be computed from statics, and the displacement at
this level, w,, can be computed by the methods described previously in this

section. The groundline displacement then can be calculated by superposition as:
We = Wo + WaR (4-122)

If Equation 4-122 is to be used successfully, the distribution of shear stress
acting along the shaft-soil interface must be known. As a worst case, the presence
of the soil could be ignored completely, and then it would be assumed that the full
applied loading, Q., is transmitted to the level of the rock surface (Qqo = Qg).

For this condition, the displacement wppg, is given by:

4 QC DS
VAR = ——— (4-123)
B2 E, .

This approach may be considered overly conservative, and therefore two further
cases are discussed below. In both, it is assumed that a limiting soil shear
resistance has developed along the shaft. For relatively shallow soil deposits and

relatively large axial loads, the assumption of a limiting soil resistance is
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Figure 4-23. Rock Socketed Shaft in Compression with Overlying Soil Layer

likely to be realistiec.

Constant Soil Resistance

Consider first the case where the soil shearing resistance is constant with depth,
so that a shear stress 7§ is developed along the shaft. For shafts through
cohesive soil layers, a total stress approach can be adopted and therefore r ¢ can

be written as:
Tf = a sy (4-124)

in which s, = undrained shear strength of the soil and a = adhesion factor.

Recommendations for « have been given elsewhere (29).

For this form of shearing resistance, the axial load transmitted to the surface of

the rock is given by:
Qo = Qc - #BDg7f (4-125)

and the relative displacement, wpap, is:
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wap = ( ) (QuDg - = 123 Dg 2rg) (4-126)

Soil Resistance Increasing Linearly with Depth

Consider now the case where the soil shearing resistance rg increases linearly with

depth below the soil surface as:

Tf = pz (4-127)

This form of variation may be applicable in cohesionless soils. For example, in a
dry, frictional soil of unit weight <, the shearing resistance along the interface

can be written as:

¢ = Koy tan§ = K y z tand (4-128)
so that:
p = Ky tané (4-129)

In these equations, oy, = vertical effective stress, K = coefficient of horizontal
soil stress acting on the shaft interface, and § = interface friction angle.

Suggested values of K have been given elsewhere (29, 30).

For this form of shearing resistance, the axial load transmitted to the surface of

the rock is:
B
W =Q -3 Dg2p (4-130)

and the relative displacement is:

4
B “E o

wpp = ( ) [QcDs - (§)BDg3p] (4-131)

SUMMARY

Analyses have been presented which allow the prediction of the load-displacement

behavior of shafts socketed into rock and subjected to either axial uplift or
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compression loading. The analyses are based on a simple model of an elastic shaft
embedded in an elastic rock mass, where the behavior at the interface between the
two materials may be elasto-plastic. Relatively simple closed form expressions
have been derived for the cases of: (1) no slip at the interface and (2) slip
occurring along the entire length of the socket (the so-called "full slip"

condition).

Equations have been presented to describe the behavior for many of the possible
combinations of material parameters and loading cases. For reference, the equation
numbers corresponding to the various cases presented have been summarized in

Figures 4-24 and 4-25.

Comparisons have been made between the predictions of the closed form expressions
and previously published solutions obtained using the finite element method.
Agreement was found between the analytical and numerical solutions for both the no
slip and full slip cases. The agreement is satisfactory for design purposes, with

the closed form solution having the attraction of ease of use.
Indications also have been given of how the predictions of the load-displacement

response of the shaft should be altered to allow for the presence of a soil layer

overlying the rock mass.
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Section 5

I0AD-DISPLACEMENT RESPONSE OF LATERALLY LOADED SHAFTS

Drilled shaft foundations are employed often to transmit lateral (horizontal)
forces and overturning moments to the ground. As in most design, an adequate
margin of safety against failure must be ensured, and the displacements resulting
from this form of loading must be tolerable. In this section, some of the existing
methods for predicting the lateral displacements of deep foundations will be
reviewed briefly, and then some new and simple closed form solutions for the

response of rock-socketed drilled shafts will be presented.

RECENT METHODS

The authors are unaware of any published method of analysis specifically for use in
predicting the response of rock-socketed shafts subjected to lateral loading. To
date, it has been customary practice to adopt the techniques developed for
laterally loaded piles in soil to the problem of a laterally loaded rock socket.
There is some justification for this approach, but what is lacking is a complete
set of solutions covering the ranges of material and geometric parameters
encountered in rock sockets. The solutions that have been developed for laterally
loaded piles generally cover the cases of long slender piles where the ratio of the
stiffness of the pile material to that of the soil is large. Shafts in rock are
usually much stubbier than their counterpart piles in soil, and the ratio of the
deformation modulus of a reinforced concrete shaft to that of the surrounding rock

mass is usually much lower than the modulus ratio for piles in soil.

In recent years, theoretical approaches for predicting the lateral displacements of
piles have been developed extensively. Two main approaches generally have been
employed. 1In the simplest approach, known as the subgrade reaction method, the
laterally loaded pile is idealized as an elastic beam loaded transversely and
restrained by uniform linear springs acting along the length of the beam. The
effect of this idealization is to ignore the continuous nature of the soil medium.
Closed form solutions for this idealization are available for a variety of loading
conditions and end restraints on the pile (l). This model has been improved by

allowing the spring stiffness to vary along the length of the pile (2, 3) and,



subsequently, by replacing the linear springs by nonlinear p-y curves (4, 5, 6,

7). For these extended forms of the subgrade-reaction approach, numerical solution
techniques are required and, from a design point of view, the method loses some of
its attraction. 1In addition, there are further limitations to this approach.
First, difficulties exist in choosing appropriate p-y curves for a given
combination of pile or shaft size and soil or rock type. Second, replacement of
the soil or rock continuum by discrete spriﬁgs precludes the extension of the
analysis to groups, because interaction between neighboring piles or shafts will

not be taken into account.

The second major development in the analysis of laterally loaded piles was made by
modeling the soil as an elastic continuum and the pile as an elastic beam.
Numerical solutions were developed, first with the use of the integral equation (or
boundary element) method (e.g., 8, 9, 10, 11) and second with the use of the finite
element method (e.g., 12, 13, 14, 15). Most of these elastic solutions were
presented in the form of charts. Until about 1981, the designer had to choose
between the succinct solutions available using the simple idealization of subgrade
reaction and the more cumbersome solutions available in the form of charts provided
by the elastic continuum analysis. In 1981, closed form expressions for the
response of flexible piles to lateral loading were presented (16). The description
"flexible" was applied to piles in which the induced displacements and bending
moments are confined to the upper part of the pile and the overall length of the
pile does not significantly affect its response. The expressions are only
approximate, but they provide a close fit to the more rigorous solutions obtained

by the finite element method.

The designer of laterally loaded piles in soil now has available solutions for the
pile response that are very simple to use. Unfortunately for the designer of
laterally loaded, rock-socketed shafts, these solutions do not cover all cases
occurring in practice. In the following, new solutions are developed to cover the

case of stubby rigid shafts socketed into rock.

PROBLEM IDEALIZATION

Consider the problem shown in Figure 5-1, which represents the cases where either
rock is at the ground surface or the lateral loading on the shaft at the level of
the rock surface can be specified completely. The shaft is idealized as a
cylindrical elastic inclusion, with an equivalent Youﬁg’s modulus E, and Poisson'’s
ratio vg = v, depth D, and diameter B. For a solid shaft having an actual bending

rigidity (EI)., the equivalent Young's modulus is given by:



/Rock surface

SRR

Figure 5-1. Lateral Loading at Rock Surface

Ee = (EI)o/(nB*/64) (5-1)

The elastic shaft is embedded in a homogeneous, isotropic elastic rock mass, with
properties E, and vy, and at the surface of the rock mass it is subjected to a

known lateral (horizontal) force H and an overturning moment M.

The analysis of the problem shown in Figure 5-1 will be considered first. The more
general case of lateral loading of a shaft socketed into a rock mass, with an

overlying soil layer, will be considered subsequently.

ANALYSIS

As described previously, lateral loading predictions have been made using a number
of different analytical techniques. In the following, some simple closed form
equations are presented for both relatively flexible and relatively rigid shafts
subjected to lateral loading. These equations are applicable for most of the
rock-socketed shafts encountered in practice. They have been derived from the
results of a finite element study of the behavior of axisymmetric bodies subjected
to nonsymmetric loading. The technique has been described in the literature (17)
and is similar to that used for lateral loading of "flexible" piles (13, 14, 15,
16) and for the study of the effects of surface loadings on pile behavior (18).
Eight-noded, isoparametric, quadrilateral elements, with 3 X 3 Gaussian

integration, were used in the present study.
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An extensive parametric study was performed for socketed shafts covering a large
range of relative stiffnesses, and it was found that the effects of variations in
Poisson’s ratio of the rock mass, vy, could be represented approximately by

considering an equivalent shear modulus of the rock mass, G¥, defined by:

6% = Gp(1 + 3vyp/4) (5-2)
in which
Er
®r = 3T ¥ vy (5-3)

is the actual shear modulus of the elastic rock mass. The use of the parameter G*
was suggested previously for the case of relatively flexible piles (16), and the
present study has verified that it also provides an adequate representation of the
behavior of relatively rigid shafts in elastic rock masses with a range of values

of vg.

For a homogeneous rock mass, it was found that the horizontal displacement, u, and
rotation, #, of the shaft at the level of the rock surface depends on the relative
moduli of the shaft and rock mass, Ee/G*, and on the geometry of the shaft, D/B.
The finite element predictions are presented in Figures 5-2 to 5-4. Figure 5-2
shows the lateral load-displacement relationships; Figure 5-3 shows the
relationships between moment and rotation; and Figure 5-4 indicates the
load-rotation and moment-displacement relationships. Two types of plot of the same
data are provided in each figure. These show the dimensionless displacements
plotted against the modulus ratio, Ee/G*, and slenderness ratio, D/B. The finite

element results have been plotted as the dashed curves on all figures.

It was suggested (16) that a shaft would behave as if it were infinitely long

where:
(D/B) > (Eg/G*)2/7 (5-4)

For these cases, the shaft response is dependent only on the modulus ratio E,/G*
and Poisson’s ratio of the rock mass vy,. Dotted curves corresponding to the
equality condition in Equation 5-4 have been plotted on Figures 5-2, 5-3, and 5-4,
from which it can be seen that the finite element predictions are independent of

D/B whenever Equation 5-4 holds. Such a shaft is "flexible", and the following
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closed form expressions provide accurate approximations for the deformations (16):

Ee Ee -
w=o05 B (VT 108 ML (537 (5-5)
¢*s ¢* c*s2 ¢*
Ee Ee _
0 - 1.08 —L (T L M (537 (5-6)
¢*B2 ¢* ¢*s3 ¢*

The appropriate forms of these equations have been plotted on Figures 5-2, 5-3, and
5-4. It is clear from these figures that Equations 5-5 and 5-6 provide adequate
predictions of the behavior of "flexible" shafts socketed into elastic rock

masses. The accuracy of these equations was verified (16) for the following ranges
of parameters: 102 < EgE, < 106 and D/B > 10. The present study has shown that
the range of applicability can be extended to 1 < Eg/E, < 106 and D/B > 1.

When short stubby shafts are socketed into weak rock, the shafts will behave as
rigid structural members. In these cases, the displacements of the shaft will be
independent of the modulus ratio, E /E,, and will depend only on the slenderness
ratio, D/B, and Poisson’s ratio of the rock mass, vy,. This type of behavior can be

contrasted to that of a "flexible" shaft.

The dotted curves in Figures 5-2, 5-3, and 5-4 indicate that a shaft will behave as

a rigid member where:
D/B < 0.05(Eg/G*)1/2 (5-7)

The present study showed that the displacements of these rigid shafts can be

expressed, to sufficient accuracy, by the simple closed form expressions below:

u=004 1L (%?)'1/3 +0.3 L (%?)'7/8 (5-8)
G*B G*B2

§ =03 —L (By7/8 58 B (2Dy-3/3 (5-9)
¢*s2 B ¢*p3 B

Appropriate forms of these equations have been plotted as solid curves on Figures
5-2, 5-3, and 5-4, where satisfactory agreement with the finite element solutions

can be seen. Because the shaft displaces as a rigid body in the elastic rock mass,



the depth beneath the surface to its center of rotation can be computed as:

0.4 (%)'1/3 + 0.3 (%) (%—D)'U8
ze = { ) B (5-10)

0.3 (7329)'7/8 +0.8 (% (%‘9)'5/3

in which e = M/H is the vertical eccentricity of the applied horizontal force H.
When applying Equations 5-8, 5-9, and 5-10, it should be noted that their accuracy
has been verified only for the following ranges of parameters: 1 < D/B < 10 and
Eo/Ey > 1.

Traditionally, the influence factors for laterally loaded piles and shafts have
been presented in the form of numerous charts (e.g., 8, 9, 10, 11). The approxi-
mate Equations 5-5, 5-6, 5-8, 5-9, and 5-10 are more attractive for design because

they are in closed form.

Shafts can be described as having "intermediate" stiffness whenever the slenderness

ratio is bounded approximately as follows:
0.05(Ee/G*)1/2 < D/B < (Eo/G*)2/7 (5-11)

Figures 5-2 to 5-4 show that, in these cases, the finite element predictions are
almost always larger than the predictions from Equations 5-5 and 5-6 for flexible
shafts and Equations 5-8 and 5-9 for rigid shafts. Typically, the displacements
for an intermediate case exceed the maximum of the predictions for corresponding
rigid and flexible shafts by no more than about 25 percent, and often by much
less. For the sake of simplicity, without the sacrifice of much accuracy, it is
suggested that the displacements in the intermediate case be taken as 1.25 times
the maximum of either: (a) the predicted displacement of a rigid shaft with the
same slenderness ratio (D/B) as the actual shaft, or (b) the predicted displacement
of a flexible shaft with the same modulus ratio (Ee/G*) as the actual shaft.
Values calculated in this manner should, in most cases, be slightly larger than
those given by the more rigorous finite element analysis for a shaft of

intermediate stiffness.

RANGE OF APPLICATION

In practice, shafts which are socketed into rock normally will have a slenderness

ratio falling within the range 1 to 10. Furthermore, the modulus ratio Eg/E,



generally will lie in the range of 1 to 10,000. The combinations of modulus and
slenderness ratios which produce flexible, intermediate, and rigid shafts are shown
in Figure 5-5 for v, = 0.25. It can be seen that each case covers a significant

portion of those likely to occur in practice.

SOIL OVERLYING ROCK

Consider now a layer of soil overlying rock as shown in Figure 5-6a. In this
problem, it is assumed that the complete distribution of soil reaction on the shaft
is known. The groundline horizontal displacement u and rotation # then can be
determined after structural decomposition of the shaft and its loading, as shown in
Figure 5-6b. The portion of the shaft within the soil may be analyzed as a
determinant beam subjected to known loading. The displacement and rotation of
point A relative to point B can be determined by established techniques of
structural analysis (e.g., the slope-deflection method). The horizontal shear
force, Hy, and bending moment, M., acting in the shaft at the rock surface level
can be computed from statics and the displacement and rotation at this level can be
computed by the methods described previously in this section. The overall
groundline displacements then can be calculated by superposition of the appropriate

parts.

The key to successful use of this method lies in determining the distribution of
the soil reaction. As a worst case, the soil could be ignored completely, allowing
the portion of the shaft in soil to be treated as a free standing cantilever. This
case may be overly conservative. For simplicity, it will be assumed that the
magnitude of the lateral loading applied is sufficient to cause yielding within the
soil and for limiting soil reaction stresses to develop along the leading face of
the shaft. Furthermore, it is assumed that this limiting condition is reached at
all points down the shaft, from the ground surface to the interface with the

underlying rock mass.

These assumptions may represent an oversimplification, because some loading
conditions may not be large enough to develop this limiting state. 1In these cases,
the predictions of groundline displacements will overestimate the true values.
However, the decision to socket the shafts into rock commonly is made because the
soil can not provide adequate restraint. In these circumstances, the assumption of

a limiting soil reaction distribution is likely to be sufficient.

The determination of the limiting soil reactions is discussed below for the

limiting cases of purely cohesive soil and purely frictional soil. It should be
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noted that these cases represent simple models for soil behavior, and therefore
they may not be appropriate for all field situations. They are intended to be used
where the rock socket dominates the dverall behavior and provides the large
majority of the resistance to load. In these cases, simplifications of the actual

soil behavior will have a minor effect on the overall shaft performance.

Shafts Through Cohegive Soil

It is often accepted that the ultimate soil resistance for piles and shafts in
purely cohesive soil increases with depth from about 2 s, at the surface (s, =
undrained shear strength of the soil) up to about 8 to 12 s, at a depth of about 3
foundation diameters below the surface. One commonly used simplified distribution
of soil resistance ranges from zero at the ground surface to a depth of 1.5B and
has a constant value of 9 s, below this depth (19). This distribution is
illustrated in Figure 5-7 and assumes that the shaft movements will be sufficient

to generate this reaction distribution.

For this case, the lateral displacement, upp, and rotation, fpp, of point A at the
shaft butt, relative to point B at the soil-rock interface, can be determined by
structural analysis of the shaft, treating it as a beam subjected to known loading,
which gives:

1 9

(EI) ¢ upp = % HDg3 + 5 MDg2 - = su(Dg - 1.58B)3 (Dg + B/2)B (5-12)
1 yp.2 3 3
(EI)e 64 = 5 HDg2 + MDg - 5 sy(Dg - 1.58)3 B (5-13)

in which Dg = depth of soil layer and (EI), = bending rigidity of the shaft section.

The shear force, H,, and bending moment, M,, acting at point B can be determined

from statics as:

Ho

H - 9 syu(Dg - 1.5B)B (5-14)

My =M + HDg - 4.5 s,(Dg - 1.5B)2 B (5-15)

Equations 5-12 to 5-15 and the assumed soil reaction stress are valid only if Hg, >

0 and Mg > 0.
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The contribution to the groundline displacement from the loading transmitted to the
rock mass now can be computed by analyzing a rock-socketed shaft of embedded length
Dy, subjected to a horizontal force Hy, and moment M, applied at the level of the
rock surface. This procedure has been described previously. These components of
displacement should be added to the displacement and rotation calculated using

Equations 5-12 and 5-13 to determine the overall groundline response.

Shafts Through Cohesionless Soil

This case can be analyzed using the reaction distribution suggested for a
cohesionless soil shown in Figure 5-8 (20). The following assumptions have been

made in deriving this distribution.
1. The active soil stress acting on the back of the shaft is neglected.

2. The distribution of soil stress along the projected front of the
shaft is equal to three times the Rankine maximum passive stress.

3. The shape of the shaft section has no influence on the distribution
of ultimate soil stress or the magnitude of the ultimate lateral
resistance.

4, The full lateral resistance is mobilized at the displacement being
considered.
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The distribution of soil resistance, py, is given by:

Pu = 3 Kp oy (5-16)

in which oy = vertical effective stress, KP = (1 + sin$)/(1 - sina), and $ = goil

effective stress friction angle.

The simplifying assumption of an ultimate soil resistance equal to three times the
Rankine maximum passive stress 1s based on limited empirical evidence from

comparisons between predicted and observed ultimate loads (20). These comparisons
suggest that the assumed value of 3 may, in some cases, be conservative. Further
discussion on this assumed stress distribution, and a comparison with the lateral

resistance factors suggested by Hansen (21), are given in (22).

For a dry cohesionless soil, with unit weight -, the relative displacement and

rotation, uppg and fpp, can be determined from structural analysis as:

1 1 1
(E1) g upp = 35 HDg3 + 5 MDg2 - 55 KpyDg7B (5-17)
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(E1) e O = % HDg 2 + MDg - % KpyDg “B (5-18)

The shear force and bending moment at the level of the rock surface are given by:

Ho = H - 1.5K,yDg2B _ (5-19)

My = M + HDg - 0.5Kp7Dg3B (5-20)

As before, this analysis will only be valid if Hy > 0 and M, > 0.

The displacements at the groundline can be computed by assuming that the loading
given in Equations 5-19 and 5-20 acts on a rock-socketed shaft and then by adding
the resulting displacements to those given by Equations 5-17 and 5-18.

SUMMARY

A general approach has been presented to predict the displacements of laterally
loaded shafts in rock. This approach includes the horizontal groundline
displacements and rotation of the shaft resulting from the application of both a
horizontal force and overturning moment at the ground surface. Simple solutions,
expressible in closed form, have been presented for a shaft embedded directly in
rock and a shaft penetrating an overlying soil layer before being embedded in the
underlying rock. The solutions cover the full range of relative shaft to rock mass
stiffness and shaft geometries encountered in practice. The approximate closed
form expressions are in good agreement with solutions obtained using the finite

element method.
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Section 6

IOAD-DISPLACEMENT RESPONSE OF TORSIONALLY LOADED SHAFTS

Almost all laterally loaded drilled shaft foundations will be subjected to some
degree of torsion because of the eccentricity of the applied loading. In addition,
single pole transmission line structures subjected to unbalanced line loading will

transmit torsional loads directly to the foundation.

Theoretical investigations of the torsional response of piles embedded in an
elastic soil have been made (1, 2). A numerical analysis yielded solutions to this
problem in the form of charts of torsional flexibility plotted as a function of
pile geometry and relative stiffness (1l). Also, an approximate analysis has been
presented which is based on a simple assumption about the stress field in the soil
surrounding a pile undergoing torsion and leads to a closed form solution for the

torsional stiffness of the pile (2).

In this section, it will be shown that the approximate analysis is not restricted
to slender piles in soil, but is also applicable to cylindrical foundations having
geometric and material properties typical of those for shafts socketed into rock.
This approximate solution is in good agreement with the more rigorous solutions.
Because of its simple algebraic form, the approximate solution is attractive for

design purposes.

The analysis of rock-socketed shafts subjected to torsion then is extended to the

case where a relatively shallow soil layer overlies the rock.

PROBLEM DEFINITION

For completeness, solutions to the torsion problem will be developed for the cases
of a cylindrical shaft in a "complete" rock socket and in a "side shear only"
socket. For the complete socket (Figure 6-la), it is assumed that perfect contact
is maintained between the shaft and the rock socket so that torque may be
transmitted to the rock mass along both the side and tip interfaces. For the "side
shear" socket (Figure 6-1b), perfect contact is maintained only along the side

interface, and no bonding or torsional restraint is assumed at the shaft tip.



a) "Complete" Socket b) "Side Shear Only" Socket

Figure 6-1. Shafts Subjected to Torsion Loading

In either case, the shaft is regarded as an elastic inclusion of depth D and
diameter B, with torsional rigidity (GJ)., embedded in an elastic rock mass. J is
the polar moment of inertia of the circular shaft section and, for convenience, an

equivalent shear modulus of the pier G, is defined as:
Ge = (6J)c/(nB*/32) (6-1)

The rock mass surrounding the shaft, from the surface of the rock mass to the shaft
tip, has an elastic shear modulus G,, while below this level the modulus is Gy. A

torque T is applied at the level of the rock surface.

LINEAR ELASTIC BEHAVIOR

The analysis presented here follows closely that published for the torsional
response of piles in soil (2). A simplifying assumption was made concerning the
stress field in the material surrounding the shaft, which enabled a closed form
solution to be determined. The assumption is that the magnitude of circumferential
shear stress induced on horizontal planes (7,4 in polar coordinates) is negligible
compared to the shear stress induced on cylindrical surfaces (ry5). If the

component 7,9 is ignored completely, then the displacements in the rock mass



surrounding the shaft can be imagined as an infinite number of cylinders twisting
inside each other. From symmetry, there can be no variation of the field
quantities in the circumferential direction and, under the above assumption, the
equilibrium equation for the circumferential direction can be written in terms of

polar coordinates as:
s .
8 (x2 1y -0 (6-2)

Upon integration, the variation of shear stress with radius, r, is given by:

To B2
Ty = (6-3)
4r2
in which 74 = 749 at ¥ = B/2. The shear strain in the rock mass, vy5, may be
written as:
i 3 v
T G T e () (6-4)

in which v = circumferential displacement. Equations 6-3 and 6-4 can be combined

to give:

To B2
) = —— (6-5)
4G 4 r3

Hid

a
i (

Integrating Equation 6-5 and substituting r = B/2 gives the rotation of the shaft,

D = — (6-6)

The variation of & with depth, z, can be determined by considering the relationship

between the torque T at depth z and the rate of change of rotation with depth, or:

T
RGN ©-7

&%
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Torque will be transferred gradually to the rock mass with depth, and therefore

equilibrium of the shaft requires that:
a _ B2 -
dz—1rB To/2 (6-8)

Equations 6-6 to 6-8 can be combined to give:

a2 B2, «B%G@

— = = (6-9)
&? 2(6I). (GI)
Using Equation 6-1, this equation can be simplified further, to give:
2
d<e _ 12 . (6-10)

az2
in which ”2 = 32/(A32) and A = G¢/Gy. It should be noted that, in deriving
Equation 6-10, it also has been assumed implicitly that 3r,y/dz is small compared
with 8rpy/dr.
Equation 6-10 has a solution of the form:

® = A cosh uz + C sinh uz (6-11)

The constants A and C are determined from the boundary conditions of the problem.

Complete Socket

For a complete socket, perfect contact is maintained between the shaft tip and the
rock, so torsional restraint is provided by the rock mass below this level. To
sufficient accuracy, the shaft tip may be regarded as a rigid punch of diameter B
on the surface of a half space, with shear modulus Gy. The punch is subjected to a

torque Ttip and its stiffness is given by:

Ttip

2 .3
= <83¢ (6-12)

in which ®¢jp is the twist of the punch. Although the shaft tip is not at the
surface, the rock mass above the shaft tip also is subjected to torsion because of

the twisting of the shaft and therefore, to sufficient accuracy, the presence of
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the overlying rock may be ignored in the treatment of the tip behavior.

The relevant boundary conditions at the shaft tip, z = D, are therefore:

Ttip
e (6-13)
Gp B3
and
® _ (98, 32, dr (6-14)
@ _ o o _ 32 ‘tp i
dz dz P T e B4

Substitution of these boundary conditions into Equation 6-11 leads eventually to

the following equation for the torsional stiffness factor of the shaft foundation:

2y 1 D, tanh[uD
G, B3 <1>= 1+ _64 2) tanh[uD (6-15)
r (3M€) (3 D

in which £ = G/Gy. Equation 6-15 has been derived for the case of a homogeneous

rock mass with Gy = G, (2).

Also of interest is the torque transmitted to the shaft tip, Ttips which can be

calculated from:

1
Teip _ cosh[ D] (6-16)
T 3x€, D, tanh|pD]
L+ & ® 7

The solutions given by Equations 6-15 and 6-16 are plotted in Figures 6-2 and 6-3
for a homogeneous rock mass with £ = 1. 1In Figure 6-2, the dimensionless stiffness
factor is plotted as a function of both the stiffness ratio, A = Gg/Gy, and the
slenderness ratio, D/B. The ranges selected correspond to shafts in rock that are
commonly encountered in practice. Equation 6-15 has been plotted as the broken
curves, and these have been compared with the numerical solutions (1) plotted as
solid curves. The agreement between the two solutions is close for all values
investigated. The approximate analysis basically ignored the shear stress

component 79 (circumferential shear stress exerted between horizontal planes).



=G, /G= |
8T 3 r b D/B

Boundary integral (1)

~—~— Approx. analytical (2)

A= G, /Gy

Figure 6-2. Torsional Stiffness Factors for Shafts in Rock (G,/Gy = 1)

0.25
£:6,/Gy= |
0.20} D/B
Ttip |
T
0.15}
0.10} 2
0.05} .
/ 10
0 1 i 1
| 10 102 103 104 10% 108

A= G, / G,

Figure 6-3. Torque Transmitted to Shaft Tip (G./Gp = 1)



The more rigorous solution indicates a slightly stiffer response of the
foundation. The differences, however, are small and could be ignored for almost
all practical cases. The solution for the torsional stiffness given by Equation

6-15 has the attraction of being expressed in algebraic form.

The solution given by Equation 6-16 for the proportion of the applied torque
transmitted to the tip has been plotted in Figure 6-3. It can be seen that, in all
cases, the torque transmitted to the tip is relatively small. For a rigid shaft
(small D/B and large A) making perfect contact at its tip, the parameter uD

approaches 0 and in the limit:

Ttip 1
Too1e & S

(6-17)

For a stubby, rigid shaft with D/B = 1 in a homogeneous rock mass (£ = 1), the
maximum torque transmitted to the tip is only about 17.5 percent of the applied
torque and, for more slender shafts, it is much less. Therefore, most of the
restraint against twisting of the foundation is provided by circumferential side

shear.

Side Shear Socket

From the preceding comments, it can be concluded that the torsional behavior of a
shaft in a "complete"” socket will be very similar to a "side shear only" socket.
For the latter case, the stiffness can be predicted by setting the ratio £ = G,./Gy

to approach infinity in Equation 6-15, from which it is found that:

', (tanh[uD]

D

By definition, the torque at the shaft tip, Ttip> is zero. If the shaft is rigid,
pD approaches 0 and:

T D
—— =D (6-19)
Gy B3 &

The response for shafts with D/B = 2 in "side shear only" sockets is plotted in



Figure 6-4. Solutions for a range of values of relative stiffness, A = Gg/Gy, are
given. For purposes of comparison, the results for "complete" sockets in which ¢ =
0.1 and 1, also are plotted on this figure. It is clear that, when a shaft makes
perfect contact with a much stiffer material below the tip (e.g., § = G¢/Gp = 0.1),
the torsional stiffness of the foundation element is not increased proportionally.
Also, the stiffness of a shaft in a "complete" socket in a homogeneous rock mass is
only slightly greater than the stiffness of a shaft with the same dimensions in a
"side shear only" socket. Therefore, the conditions at and below the tip of most
rock-socketed shafts have only a minor influence on the torsional stiffness,
despite the fact that they can have a significant influence on the proportion of

the applied torque transmitted to the tip, as shown in Figure 6-5.

SOIL OVERLYING ROCK

Consider now the case where a layer of soil overlies the rock, and the applied
torque, T, is defined at the surface of the soil as shown in Figure 6-6. In this
problem, it is assumed that the complete distribution of circumferential shear
stress on the portion of the shaft within the soil layer is known. The total twist
of the shaft at the surface then may be determined after analyzing separately the

portions of the shaft in soil and in rock and applying superposition (Figure 6-6b).

The success of this method depends on the correct determination of the soil
reaction to the applied torsion. It is assumed here that the soil layer is
relatively shallow, of depth Dg, and that the reason the shaft 1s socketed into
rock is because of the inability of the soil alone to provide adequate resistance
to the applied loading. In these circumstances, it appears reasonable to assume
that a limiting distribution of circumferential shear stress acts between the soil

and the shaft.

To determine the effect of the soil layer on the torsional response of the shaft, a

number of assumptions are possible. Three of these are discussed below.

First, the presence of the soil layer could be ignored completely, in which case
zero shear stress would be considered at the face of the shaft. Therefore, the
full applied torque would be considered to be transmitted to the level of the rock
surface. In this, the most conservative approach, the twist, &g, of the shaft
butt, A, relative to a point in the shaft at the interface between soil and rock,

B, is given by:

6-8
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Figure 6-6. Rock Socketed Shaft under Torsional Loading with Overlying Soil Layer

g
Spn = ——— 6-20
BTG, (6-20)
This quantity should be added to the twist of the lower portion of the shaft
embedded in the rock to give the overall twist at the groundline, &. The
contribution from the depth embedded in rock can be calculated by the techniques

described previously.

Second, it could be assumed that some resistance to torque is provided by the soil
and, in particular, that a constant value of shear stress, 7g, is developed along
the entire interface between the shaft and soil. This assumption appears
reasonable for a shallow layer of perhaps residual clay overlying rock, where a

total stress approach to the soil behavior can be adopted and r¢ is given by:

6~10



rf = a sy (6-21)

in which s,; = undrained shear strength of the clay (considered constant with

depth), and o = empirical adhesion factor.

Suggested values for a have been given elsewhere (3) for axially loaded shafts, and
the same values ought to provide reasonable first estimates of the maximum adhesion
developed under torsional loading. For this case, the torque transmitted to the
level of the rock surface, T, is given by:

To = T - nB2Dgrg/2 (6-22)

and the twist of point A relative to B is given as:

1
&pp = (G_Jj_:: (TDg - ﬂBzDsz’rf/ll-) (6-23)

A third possibility is to assume that the torsional resistance of the soil

increases linearly with depth, z, so that:
Tf = pz (6-24)

This form of resistance is likely to be more realistic for sands where, for a dry

sand of unit weight v, p can be written as:

p = Ky tané (6-25)
in which K = coefficient of horizontal soil stress and § = interface friction
angle. Suggested values for K have been presented elsewhere (3, 4). For this
case, the torque at the level of the rock surface is:

Ty = T - nB2Dg2p/4 (6-26)

and the relative twist of the length of the shaft in the soil is:

(TDg - == B2 3p) (6-27)

1
%8 = G, 12

It should be noted that these cases represent simple models for soil behavior, and
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therefore they may not be appropriate for all field situations. They are intended
to be used where the rock socket dominates the overall behavior and provides the
large majority of the resistance to load. In these cases, simplifications of the

actual soil behavior will have a minor effect on the overall shaft performance.

SUMMARY

An analysis of the response of shafts socketed into rock and subjected to torsion
has been presented. Simple, closed form predictions have been made of the rotation
of the shaft at the ground level for shafts embedded in an elastic rock mass. For
most shafts encountered in practice, the contact conditions at the shaft tip and
the nature of the material underlying the tip have only a minor influence on the
torsional behavior. Modifications to those solutions have been presented for the
case where the shaft first penetrates a soil layer before being embedded in the

underlying rock mass.
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Section 7

INTERPRETATION OF FIELD TESTS

In this section, a number of reported field load tests on rock-socketed shafts are
examined, and the data are interpreted in terms of the simple analytical models

presented in previous sections. The procedures outlined and used herein are quite
general and can be used to interpret a wide range of load tests on model-scale and
prototype shafts. The simple models have been fitted to the test data to evaluate
and identify the key parameters involved. Some of these parameters, in turn, have

been correlated against more commonly used engineering properties of the rock mass.

AXTAL LOAD TESTS

The majority of field data from test loading of rock sockets has been obtained for
axial loading conditions. These tests include both vertical compression and uplift
loading of complete and shear-only socketed shafts. In many cases, the full load-
displacement curve was reported, which allows a more detailed interpretation of the
field behavior than simply estimating the maximum average side shear resistance. A
number of these tests were selected for study and, in particular, the simple model
for the load-displacement behavior presented in Section 4 was fitted to the test
data by back-calculation of the parameter values. By this approach, some of the
more important aspects of the mechanical behavior of the socketed shafts have been
highlighted, and the key parameters of the model have been identified for practical
cases. The cases selected for study are listed in Table 7-1, which also includes

details of each test configuration and the interpretation that has been made.

Rigid Shafts

In Table 7-1, modulus values of the rock mass surrounding the shaft (E,), and in
some cases the rock beneath the base (E}), are listed together with the geometric
details of each shaft (D and B). The values of E, and Ej have been back-calculated
using the methods described below, and the values of D and B have been obtained
from the source references. In all cases, it has been assumed that the equivalent
modulus of the concrete shaft is E, = 35 GN/m2 (5 % 106 psi). For rigid shafts,
the precise value of E. is unimportant, since it is not used directly in any of the

back-calculation procedures. However, an approximate value for E. is required to
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Table 7-1

DETAILS OF AXIAL LOAD TESTS

- Ur
Test?d Reference Rock qP D B S1 S9 S3 and Ey
L.D. Type (N/m?) (@) (@)  (MN/m)  (MN/m)  (MN/m)  vp  (ON/m?)
Shear Sockets - Compression Loading
Pl 1 Shale 6.75 1.37 0.71 661 61 - 0.22 378
P3 1 Shale 6.75 1.37 0.71 447 244 - 0.22 256
Bay St 2 Shale 41.0 0.686 0.838 649 250 - 0.22 426
S3 3 Mudstone 0.55 2.51 1.17 1613 294 - 0.26 535
S5 3 Mudstone 0.59 2.59 1.12 1478 221 - 0.26 491
A2 4 Sandstone 6.0 0.92 0.21 121 8 - 0.25 146
A3 4 Sandstone 6.0 0.40 0.316 119 14 - 0.25 184
Voided Toe 5 Chalk 0.8 8.59 1.146 730 130 - 0.25 113
A3 8 Siltstone 0.3 8.90 0.45 500 23 - 0.25 96
Complete Sockets - Compression Loading
P2 1 Shale 6.75 1.37 0.71 630 229 172 0.22 360
P4 1 Shale 6.75 1.37 0.71 880 563 194 0.22 392
M3 3 Mudstone 2.0 1.80 0.66 1250 60 60 0.26 613
Solid Toe 5 Chalk 0.8 8.50 1.146 825 236 - 0.25 1288
Al 8 Siltstone 0.3 8.95 0.45 1000 20 - 0.25 1768
Shear Sockets - Uplift Loading
1A 6 Sandstone 2.5 1.08 0.472 1500 92 - 0.25 1188
1B 6 Sandstone 2.5 1.75 0.45 341 76 - 0.25 208
1c 6 Sandstone 2.5 2.77 0.45 1000 167 - 0.25 451
2B 6 Sandstone 2.5 0.90 0.45 125 8 - 0.25 111
2C 6 Sandstone 2.5 1.30 0.536 208 36 - 0.25 141
2F 6 Sandstone 2.5 1.67 0.464 385 65 - 0.25 239
3B 6 Sandstone 18.0 0.80 0.45 1333 478 - 0.25 1258
3C 6 Sandstone 18.0 1.60 0.45 2400 469 - 0.25 1551
24-2 7 Limestone - 1.20 0.60 712 17 - 0.25 468
24-3 7 Limestone - 1.32 0.60 356 140 - 0.25 226
AL 8 Siltstone 0.2 3.95 0.45 425 19 - 0.25 150

a - As designated in source reference

b - Average values quoted in source reference

c - Either assumed (0.25) or as quoted in source reference
d - Ecg =35 GN/m? assumed

e - Measured Y =~ 4.3°

f - Measured ¢y = 5.7°

g - Ep = Ey assumed

h - Indeterminant
i - Estimate only, direct measurement not made
J - Cast under bentonite
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Table 7-1 Continued
Ee B pa - -

Ep (Er (55)2 c tang - tany ¥° ° Tmax ¢/ Tmax Roughness
(MN/m2) °f (MN/m?2) (¢ = 30°) (4 =45°) (MN/md) Class
- 6.2 1.10 0.0252 2.5 1.4 - - R4
- 9.2 1.20 0.2978 27.3 16.6 2.09 0.57 R4
- 30.7 1.66 0.2698 25.1 15.1 - - Rl
- 3.6 0.30 0.0537 5.3 3.1e 0.57 0.53 R4
- 3.3 0.28 0.0409 4.1f 2.3f 0.46 0.61 R&
- 3.1 0.75 0.0126 1.2 0.7 1.12 0.67 R2
- 29.7 1.02 0.0428 4.2 2.5 1.41 0.72 R3
- 1.4 0.039 0.0324 3.2 1.9 - - j
- 0.2 0.077 0.0056 0.6 0.3 - - -
230 6.5 0.82 0.0352 3.5 2.0 - - R3
260 6.0 0.92 0.2884 26.5 16.1 - - R4
85 1.9 h - - - - - -

1288 1.2 0.066 0.0194 1.9 1.1 - - i
1768 0.1 - - - - - - -
- 1.4 0.25 0.0150 1.5 0.9 0.85 0.29 -
- 2.8 0.43 0.0535 5.3 3.1 1.80 0.24 -
- 0.5 0.29 0.0318 3.2 1.8 - - -
- 19.7 0.10 0.0170 1.7 1.0 0.80 0.13 -
- 10.5 0.22 0.0474 4.7 2.7 0.47 0.47 -
- 2.8 0.59 0.0390 3.9 2.2 0.90 0.66 -
- 2.2 0.83 0.1473 14.3 8.4 3.18 0.26 -
- 0.4 1.24 0.0469 4.6 2.7 2.26 0.55 -
- 4.7 0.15 0.0061 0.6 0.3 - - -
- 8.0 0.071 0.0097 1.0 0.6 - - -
- 0.8 0.066 0.0067 0.7 0.4 - - -

1m=3.28 ft

1 MN/m2 = 145
1 GN/m2 = 145

1 MN/m = 68.5

psi = 10.44 tsf
ksi = 10,440 tsf

kip/ft
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determine whether each shaft will behave as a rigid member.

In Section 4, it was shown that, to sufficient accuracy, a shaft loaded axially
will behave rigidly whenever the stiffness ratio, (Ec/Er)/(ZD/B)z, is greater than
about 1. In all but five of the cases listed in Table 7-1, this condition has been
met, and therefore the interpretation of rigid shaft behavior is justified.
Although some shafts have values of the stiffness ratio less than 1, their behavior
has been interpreted under the assumption that they also are rigid. The errors
following from this assumption are small, and the minimum observed stiffness ratio

of about 0.1 still indicates an extremely stiff shaft.

Interpretation of Rigid Shaft Behaviox

It was shown in Section 4 that the elastic response of a rigid shaft in a side

shear-only socket can be described by:

1+ ve
WC = -——W QC (7-1)
in which
¢ = In[5(1 - vy) D/B] (7-2)

For a rigid shaft, the side shear distribution is uniform, and the shaft will slip

whenever the shear stress reaches a magnitude of r = c.

Once full slip occurs along the dilatant, cohesive-frictional interface, the

load-displacement relationship becomes:

Qc
we = Rp ¢

B
D - R2p) (7-3)

in which

1

2 tang tam/)) (7-4)

Ri = A +vy (¢ +

and



1+ v,

Ry = ¢

[+
tang tanp) (Ep) (7-5)

During compression load testing of a socket, the slopes of the load-displacement
curves can be measured, and the behavior may be idealized as shown in Figure 7-1.
If the shaft is rigid, then the measured slopes theoretically are related to the

model parameters by:

nE D
1=+ vpe (7-6)
and
nE D
Sy = Ry (7-7)

Equation 7-6 can be inverted and then the rock mass modulus Ey, can be determined
directly from the measured slope S (of the initial portion of the curve) and the
dimensions of the shaft, as long as a value for v, is assumed. Equations 7-3 to
7-5 show that the slope of the idealized curve, corresponding to full slip, is a
function of the two interface strength parameters, ¢ and ¢, and the interface
dilation angle, ®. A maximum of only two parameter values may be determined from a
straight line fit to the experimental data, and therefore it is not possible to
determine ¢, ¢, and ¥ independently. However, the separate determination of ¢ and
¥ is unnecessary, because these parameters always appear in combination in the
equation describing the load-displacement response. Therefore, the quantity

(tang-tamp) can be obtained from the measured slopes Sq and S9 as follows:

1 52
tang - tany = (z_g) (m) (7-8)

The cohesion ¢ then can be calculated from:

Q.
c = (2¢ tang tany + 1) ;gﬁ (7-9

in which Qi is the intercept on the vertical axis (w. = 0) of the straight line



Failure (y=0)

Slip behavior
(constant ¢, ¢, ¥)

Commencement
of full slip

Elastic behavior
(constant E )

Y

0 L

Figure 7-1. Interpretation of Side-Shear-Only Test

fitted to the full-slip portion of the load-displacement curve. Alternatively, c

can be computed from:

o - = (7-10)

in which Qgg is the load at the initiation of full slip (Figure 7-1). Equation

7-10 can be considered as a useful check on the curve fitting procedure.

In many field tests on shear sockets, an ultimate load is observed after relatively
large slip displacement has occurred. The schematic load-displacement curve in
Figure 7-1 shows this behavior. In reality, the dilation occurring at the
shaft-rock interface will not continue indefinitely. There also may be degradation
of the strength parameters ¢ and ¢ as slip takes place, but this is not considered
in the present simple model of interface behavior. Once the dilation ceases, there
can be no further increase in the radial normal stress acting on the shaft and
therefore no further increase in frictional strength. At this stage, the shaft
load reaches its ultimate value. For the simple model to account for this
behavior, a third (horizontal) linear portion of the load-deflection curve is

assumed (Figure 7-1). The average shear stress acting on the interface at this
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stage, Tyay, 1s often termed the unit side shear resistance. Typical values of

Tmax measured in field loading tests have been given in Figure 3-7.

The measured response during test loading of a complete socket may be interpreted
similarly. 1In this case, additional information might be available, such as the
relationship between the settlement of the shaft butt and the load transmitted to
the tip, as shown in Figure 7-2. For this case, the slope S1 is related to the

elastic and geometric parameters by:

B b D, B
S84 = (—————) E = = w————) E 7-11
1 Vb2> bt (D (@ T Er (7-11)

It is obvious from this equation that the measurement of Sj alone is insufficient
to determine both Ey and E4, unless a value for the ratio Ep/Ey is determined
independently or assumed. If measurements are made of the tip load, and it is also
assumed that vy = vy, then enough information is available to determine both E, and
Ey,. For a relatively rigid shaft, it is sufficient to ignore the shortening of the
shaft. Therefore, the measured slope, S3, of the curve of the tip load versus butt

displacement is related to the elastic modulus Ep by:

B
S3 = (———) Ey (7-12)
1 - Vb2

Substitution of Equation 7-12 into 7-11 allows the determination of E..

Once full slip of the shaft has occurred, the load-displacement relationship for

the complete socket becomes:

Q¢
(ﬂErB)

- Rg 2 (7-13)

We = Ry 5

in which

Ry R3(2D/B)

Rs = R3@p/B) + R

(7-14)

R3 Ry

Re = g3/ + Ry

(7-15)
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Total load

Commencement
of full slip

Figure 7-2. Interpretation of Complete Socket Test

s Er
R3 = 3 (1 - vpd) () (7-16)

As with a shear socket, the slopes S1, So9, and S3 can be used to determine the

quantity (tan¢-tany) and, for the complete socket, the appropriate relationship is:

1 Sy - 83
tang - tany = (—2?) (Sl—_sz') (7-17)

For this case, the cohesion ¢ can be obtained from

Qi

¢ = (2¢ tan¢g tany + 1) 7D (7-18)

in which Qi is the intercept of the "full slip" line on the vertical axis (Figure

7-2).

For convenience, the equations used to back-calculate Ey, Ey, ¢, and (tang-tany)

for the compression load cases have been summarized in Table 7-2. It should be



Table 7-2

INTERPRETATION OF AXTAL LOAD TESTS ON RIGID SHAFTS

(a) Shear Socket - Compression or Uplift

a + urjf
Br - =5 151

tang- tany = (%E) (EETT_EE)

c = (2¢ tan¢-tany + 1)

() Complete Socket - Compression

1+ vt
Ey = [—T] (81 - §3)

@ - vpd
Bp = 51 83
1 S9 - S3
tang - tany = (EE) (§3fj—§5)

Qi

¢ = (27 tan¢ tany + 1) D

noted that the behavior of a rigid shaft in uplift loading is essentially the same
as that for an identical shaft in a shear socket subjected to compression loading.

Only the directions of the displacements and applied loads are reversed.

Back-Analysis

The techniques described above have been applied to 25 axial load tests reported in
the literature. The back-calculated values of the model parameters are listed in
Table 7-1, and the load-displacement curves are given in Appendix A, in which each
figure shows the measured response of the shaft and the interpretation that has
been made. In all cases, at least a bilinear fit has been made to the observed
behavior, corresponding to an initial elastic response and then to full slip of the

shaft. For some tests on shear-only sockets, ultimate failure was observed in the
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field. As discussed above, this has required the fitting of a third linear section
to the observed load-displacement curve. In such cases, the final horizontal
portion of the curve indicates that dilation at the interface has ceased (y = 0),
and the shaft continues to slip in its socket under constant load, with a constant
shear stress (Tp,y) acting at the interface. In these cases, the value of 7 ; has

been determined from the observed maximum applied load.

Although values for ¢ and ¥ can not be determined separately from the test data,
values of 3 corresponding to an assumed ¢ = 30° and 45° have been listed in Table
7-1 for reference purposes. In several of the tests (3), dilation at the interface
was measured. Plots of dilation versus shear displacement for these cases are

included in Appendix A, and the measured values of % are given in Table 7-1.

Comments and General Observations

The complete interpretation of some tests required the making of some additional
assumptions. It was necessary to assume that Poisson’s ratio (v and vy) was equal
to 0.25, whenever specific data were not provided in the source references. For
the "solid toe" shaft (5), a value of S3 was not measured directly, but an estimate
was made on the basis of data from plate load tests in the chalk. In determining
E, for shaft P2 (1), it was assumed that no load was transmitted to the tip until
the shaft began to slip (Figure A-10). While this assumption is not in complete
agreement with the observations, it is considered reasonable for the purposes of

the present interpretation.

Quite a wide range of values of (tan¢-tany), from 0.0024 to 0.30, was deduced from
the test results. This parameter is very sensitive to the value of S5, which is
determined by some subjective interpretation. Large values of S5 (relative to S7)
yield large values for (tang-tany). On the other hand, the deduced cohesion, c, is
less sensitive to S9 (unless Sy is close to §7) but more sensitive to Qj. E, and

Ep are directly proportional to S and S3, respectively.

It is also interesting to note the observed values of the ratio ¢/F,x. For a
rigid shaft, this value is equal to the ratio of the shaft load at first slip and
the ultimate shaft load. A wide range was observed, from 0.13 to 0.72, indicating

that shaft slip may commence well before the maximum load is reached.

Correlations with Roughness and Strength

Correlations were made between the deduced values, c¢ and (tané-tany), and the



measured interface roughness, where available. Several classes of interface
roughness have been defined (4) and these are given in Table 7-3. A continuous

measure of roughness, RF, also has been defined (1) as follows:

- Lt
RF = (%) () (7-19)

in which @ = average height of asperities along the socket, B/2 = nominal socket
radius, Li = total distance traveled up and down the asperities along the socket

wall profile, and D = nominal socket depth.

By considering the irregular socket profile as an equivalent set of regular,
periodically spaced asperities, it is possible to correlate approximately the
roughness factor suggested in Equation 7-19 with the roughness classes given in
Table 7-3. Details of the roughness factor corresponding to several regular
profiles are given in Figure 7-3, and the approximate equivalence between RF and

roughness class is given in Table 7-3.

The roughness class, where provided directly in the source reference or determined
from RF, has been listed in Table 7-1. Attempts to correlate ¢ and (tan¢:tany)

with roughness class have been made in Figures 7-4 and 7-5, but it is clear that no
strong trends can be established. For future tests, it would be useful to quantify
socket roughness (either as a class or a value of RF) for axial load tests in rock

to allow correlation of strength with roughness.

In many of the cases reported in Table 7-1, values of uniaxial compressive strength
for the rock have been recorded. This has allowed correlations between c,
(tang-tamyp), Ty, and qy, as shown in Figures 7-6 to 7-8. 1In all figures, the
stresses have been normalized by the atmospheric pressure, p,. From Figure 7-6, it
is clear that a good correlation exists between ¢ and q,. All data points lie

above or on the curve given by:

q
&) = 0.1(—) 3

7-20
Pa Pa ¢ )

Figure 7-7 also shows a good correlation between (tang-tany) and q,, although
intuitively this may have been less obvious. A reasonable lower bound-to most data

points is given by:
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Table 7-3

APPROXIMATE EQUIVALENCE BETWEEN ROUGHNESS CLASS AND ROUGHNESS FACTOR

Class?® Definitiond Roughness FactorP x
Nominal Radius of Socket
(RF X B/2)
m
Rl Straight, smooth-sided socket, grooves or 0tol
indentations less than 1.0 mme (0.04 in) deep
R2 Grooves of depth 1 to 4 mm (0.04 to 0.16 in), 1l to 4
width greater than 2 mm (0.08 in), at spacing
50 to 200 mm (2 to 8 in)
R3 Grooves of depth 4 to 10 mm (0.16 to 0.4 in), 4 to 14
width greater than 5 mm (0.2 in), at spacing
50 to 200 mm (2 to 8 in)
R4 Grooves or undulations of depth greater than > 14

10 mm (0.4 in), width greater than 10 mm
(0.4 in), at spacing 50 to 200 mm (2 to 8 in)

a - As defined in (4)

b - As defined in (1)

Regular Profile Roughness Factor (RF)
Q) — (%) (e )
— a4 Pk
S d d
b) Ve Ve * -/ (-ZBE) (|+|.|55(—g—))
SR Ry
S d 1.1558Sd
1
c) W (%) (Jirag)
S d

Figure 7-3. Roughness Factors for Selected Regular Profiles
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q
(tan¢g - tany) = 0.001(5252/3 (7-21)
a

The same exponent appearing in both Equations 7-20 and 7-21 may only be for-

tuitous. Confirmation of these equations must await further corroborating data.

From the cases examined in Table 7-1, only a few values are available for 7y, as

plotted in Figure 7-8. The design curve suggested in Section 3 and repeated below:

Tmax

¢ Pa

q
) = 0.63(—) /2 (7-22)
Pa

also has been plotted on Figure 7-8, and it forms a lower bound to all the data

points.



LATERAL LOAD TESTS

There is a dearth of data in the literature on the performance of rock-socketed
shafts subjected to lateral loading. Indeed, the authors have found only one
reported test in which two shafts embedded in rock over a significant proportion of
their length were loaded laterally (10). This load test involved the jacking
together of two adjacent shafts, which once formed part of the foundations for an
electrical transmission line structure. A schematic cross-section showing the two
shafts and the loading arrangement is given in Figure 7-9. Each shaft has a
different length and diameter and, in particular, each has a different eccentricity
of the loading point above the immediate rock surface. Furthermore, between the
shafts, the rock surface slopes at approximately 25 degrees to the horizontal.

This last feature has been ignored in the interpretation of the test data, and the
immediate surface around each shaft was treated as horizontal. Any structural
interaction between the shafts and the fact that shaft 14-U has an enlarged base
also have been ignored. However, the eccentricity of loading of each shaft has
been taken into account, as has the eccentricity of the heights above the rock
surface of the displacement measuring points. In the latter regard, each shaft was
assumed to behave rigidly during lateral loading, and the rock mass was assumed to
behave elastically, so that horizontal displacements at the groundline may be
calculated from the measured horizontal displacements, using the centers of
rotation deduced from Equation 5-10. For a rigid shaft, the groundline horizontal

displacement and rotation are given by (Section 5):

w=004 aﬂg (B@)'l/3 +03 2 (32‘;13)‘7/8 (7-23)
GxB 2
§ - 0.3 — L (%)'7/8 +0.8 L (%)'5/3 (7-24)
GxB 2 c*p3
and the center of rigid body rotation is at a depth, z., given by:
2D, -1/3 e, ,2D.-7/8
0-4(B) +0-3(B) (B)
ze = { } B (7-25)
2,.-7/8 e, (2D,-5/3
0.3(50 % + 0.8 &

In the above equations, H and M are the applied shear and moment at the ground

surface, e = M/H is the vertical eccentricity of the applied horizontal force, and
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Figure 7-9. Details of Lateral Load Test

G¥* is related to the elastic properties of the rock mass by:

1+ vy /4) Eg

=T 7 (7-26)

For the assumption of rigid shaft behavior to be valid, the following condition

must hold:
(Ec/G*) (B/2D)2 > 100 (7-27)

in which Eg = (EI)J(wB4/64) is the equivalent Young’s modulus of the shaft
section, (EI). is its actual bending rigidity, and the moment of inertia of a

circular section about a diameter is w34/64.

The measured lateral load-horizontal displacement relationship for each of these

shafts is given in Figures 7-10 and 7-11. A straight line has been fitted to the
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initial portion of each curve, and the slope of the line S’ has been reported in
Table 7-4 for each case. Also recorded in Table 7-4 are the slopes S of the linear
relations between the measured applied load and the deduced horizontal
displacements at the groundline. Equation 7-23 has been used to determine values
of G* for each case from the slopes, S = H/u, and the known geometries and loading
configurations. In each case, a value of vy = 0.25 has been assumed for the rock
mass, allowing the determination of E, from Equation 7-26. Deduced values of the
Young’'s modulus for the rock mass immediately surrounding each shaft have also been
listed in Table 7-4. It can be seen that the calculated modulus for shaft 14-U is
approximately four times that for shaft 14-D. Values of the bending rigidity of
the shafts have not been given in the source reference, but assuming typical
reinforced concrete details implies that E, is on the order of 50 GN/m2 (7 x 106
psi). The relative stiffness, (Ee/G*)(B/ZD)z, has been calculated for each shaft,
assuming E, = 50 GN/m2, and also is given in Table 7-4. 1In both cases, the
relative stiffness is less than 100, indicating that for each shaft, the assumption
of rigid behavior may be slightly inaccurate. However, values of (EP/G*)/(B/ZD)2 =
16 and 65 still indicate very stiff shafts.



Table 7-4

DETAILS OF LATERAL LOAD TESTS

Shaft D B e S s G* Ey (E/G*) (B/2D) 2
I.D. (m) (m) (m) MN/m MN/m (MN/m2)  (MN/m2)

14-U 1.8 0.9  0.426 498 600 196 414 16

14-D 2.4 1.2  1.551 149 157 48 101 65

Source: Data obtained from (10).

TORSION LOAD TESTS

No reported cases of torsional load tests on rock-socketed shafts were found in the
literature. Therefore, it is not possible to illustrate the application of the

theory developed in Section 7 to the interpretation of a torsional field test.

SUMMARY

Interpretations have been made of reported field load tests on rock-socketed
shafts. Twenty-five tests were found in the literature for axial loading (both
compression and uplift), but only two were found for lateral loading, and none were

found for torsional loading.

For most of the examined cases of axial loading, it was shown that rigid shaft
behavior was reasonable. This is largely because of the stubby geometry of the
test shafts, but may also result because the data were obtained for shafts in
sedimentary rocks. The assumption of rigidity may be less acceptable for shafts in
harder rocks where the modulus values for the rock mass and the shaft material are

closer.

It is suggested that the simple theoretical model for shaft behavior under axial
loading, including slip, provides a reasonable fit to the experimental data, and
may be used to back-calculate parameter values from field load tests. By applying
this model, good correlations were found between the uniaxial compressive strength
of the intact rock and the cohesion, c, the friction-dilation parameter,

(tang-tany), and the peak unit side shear stress, Tp,y.

For the two shafts in rock subjected to lateral loading, a linear relationship

7-19



between horizontal load and displacement was found at working load levels. The

analytical model presented in Section 5 was used to calculate the apparent modulus

of the rock mass for lateral loading conditions. Further field testing of this

type is required to verify the linear model for working load levels in rock, over

the common range of shaft geometries and rock types.
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Section 8

DESIGN EXAMPLE OF FOUNDATION FOR ILATTICE TOWER

In this section, some of the analytical techniques and empirical data presented
earlier will be used for the preliminary design of a drilled shaft foundation for
one leg of a lattice tower transmission structure. The calculations illustrate
only the preliminary design of a shaft in rock. 1In general, it is good practice to
test load some foundation elements at any new site until sufficient experience with

the natural materials and confidence in the design have been gained.

GEOTECHNICAL DATA AND DESIGN CRITERTIA

The design loadings for this example are shown in Figure 8-1. The foundation to be
used is a drilled shaft in rock, and it is assumed that the rock outcrops at the
surface. The rock mass is of good quality, having tightly interlocking,
undisturbed rock with rough unweathered joints spaced at about 3 to 9 feet. The
rock mass is assumed to have the following properties: Young’'s modulus (E,) =
2000 kip/ft2 and Poisson’s ratio (vy) = 0.25, and the uniaxial compressive strength

of the intact rock (q,) = 100 kip/ft2.

The foundation is to be designed according to the following specifications: (1) a
minimum factor of safety of 2.5 under axial compression, axial uplift, and lateral
loading, (2) maximum axial and lateral displacements under the respective working
loads of 1 inch, and (3) maximum groundline rotation under the lateral forxce of 1

degree.

DESIGN PROCEDURE FOR AXTAL LOADING

The aim of the design exercise is to determine suitable shaft dimensions to meet
all the design criteria. For the given loadings, it is likely that axial
compression will govern the design, and therefore a suitable starting point for the
design process involves an examination of the ultimate condition. In the
following, it is assumed that resistance to axial loading is provided only by the

side shear. Tip resistance is ignored to simplify the example.

Knowledge of the rock strength, together with the preliminary design Equation 7-22,



Uplift =50 kips

Compression=100 kips
Lateral=10kips Pr P

Ll E,=2000 kip/ft?
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Figure 8-1. Loading and Rock Mass Properties for Lattice Tower Foundation

allows a conservative estimate of the peak unit side shear resistance, 7p,y.

_T

max qu
) = 0.63(—) /2 (8-1)
a Pa
in which p, is atmospheric pressure. In English units, py = 2 kip/ft2 and:

Fmax = 0.63 X (%0)1/2 x 2 = 8.9 kip/ft2

A factor of safety of 2.5 implies that the maximum axial load (Qpuyx) is 250 kips.

The maximum axial load is related to the unit side shear resistance by:

Qmuax = mBDTpax (8-2)
which implies that a suitable length of the embedded shaft is:
Qmax
" B -2

The selection of the shaft diameter often is made on the basis of construction

considerations. For the present case, it is assumed that B = 1.5 ft, and therefore

from Equation 8-3:



250
D - T xTs5xg9 2% ft

Rounding off this result, D is selected to be 6 ft, in which case the factor of

safety for axial compression is slightly larger than 2.5.

Before predicting the load-displacement response of a shaft with B = 1.5 ft and D =
6 ft, the relative rigidity of the shaft is considered. The condition for a rigid

shaft has been discussed in Section 4 (Equation 4-103). For the present case:

GES) (B2 _ (130,000
g2 ‘) = 000

) 2?5751 (8-4)

in which the modulus of the concrete shaft (E.) has been taken as 730,000 kip/ftz.
Because the relative rigidity is greater than 1 (Section 4), the shaft behaves

rigidly under axial loading.

Consider first the linear elastic response of this rigid shaft. The prediction of

its axial stiffness is given below. From Equation 7-2, the parameter ¢ is:
¢ = In[5(1 - v{)D/B] = In[5 x 0.75 X 6/1.5] = 2.708 (8-5)
From Equation 7-1, the elastic stiffness is:

Qe . .
v~ [@ v ope)B0 = (T35 7.708) * 2000 % 6 (8-6)

= 11137 kip/ft = 928 kip/in

To determine the response of the shaft once it slips, values of the parameters c
and (tan¢-tamp) are required. From Equation 7-20, a preliminary design value of ¢

is given by:

dQu 2/3

C
(Pa) =~ 0.1 (pa) (8-7)

from which
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2/3

X 2 = 2.7 kip/ft?

c=0.1x (}%9

)

Equation 7-21 gives a value of (tang- tamyp) suitable for use in preliminary design:

tang tany = 0.001(—)
a

= 0.001 % (

du
o 2/3 = 0.0136 (8-8)

100,2/3
2

The load-displacement curve for full slip is given by Equation 7-3 and, for

convenlence, it is repeated below:

Ry B
We = (;E';B) Qe - R2(m) (8-9)
in which
1 1
R1 = QA +vy) (¢ + m) =1.25 x (2.708 + m) = 49,34 (8-10)
and
1+ v,
c 1.25 2.7
R2 = g tamp) &2 ~ (0.0138) * (Gooo) ~ 0-124 (8-11)
Therefore
49 .34 1.5
Ye = (2000 x 60 Qe - 0-124 X (557)
= 1.309 x 10-3 Qe - 0.093 (ft. with Q. in kips)
= 0.0157 Q. - 1.116 (in. with Q. in kips)

The predicted overall axial load-displacement behavior therefore can be represented
as in Figure 8-2, which shows an initial linear elastic portion, a linear slip
portion, and ultimate failure. Under the design compressive load of 100 kips, the
predicted displacement is 0.45 inches (point C in Figure 8-2), which lies within

the slip region and also meets the design specification.

In the design calculations presented above, the predicted slip displacements were

based on what are likely to be lower bound estimates of ¢ and (tang-tany). Because
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Figure 8-2. Predicted Axial Behavior of Lattice Tower Foundation

this is a conservative approach, it is likely to overpredict the actual

displacements at any given load.

The same general axial response can be expected under uplift loading, provided the
same values of E4, Tpux, ¢, and (tang-tamyp) can be relied upon. If this is
reasonable, then the uplift displacement under an uplift load of 50 kips can be
expected to be about 0.05 inches, which lies within the linear elastic region
(point U in Figure 8-2). It will not always be reasonable to adopt the same values
for the model parameters when examining both compression and uplift behavior. For
example, adverse joint orientations may necessitate the reduction of the design
values of any or all of Ey, Tyax, ¢, and (tang-tany) for the uplift case. In the
present case, it also would be advisable to examine the possibility of wedge
failure during uplift as the aspect ratio D/B = 4 is relatively low, but this is

not pursued here.

DESIGN PROCEDURE FOR LATERAL LOADING

The behavior under lateral loading is now considered. Assuming that the shaft is
effectively rigid with respect to bending, Equations 5-8 and 5-9 may be used to
compute the displacements. The effective shear modulus of the rock is G¥* = G,.(1 +

3vy/4) and, since G4 = E/[2(1 + v4)], their values are calculated as:
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2000 . 2
Gy = % 1.95 = 800 kip/ft

and
G = 800 x (1 + 3 x 0.25/4) = 950 kip/ft2

Therefore, the displacement and rotation at the groundline from a horizontal force

of 10 kips are:

= 0.4 o (%9 /3 0.4 x 63612'173 (%%g)'1/3 (8-12)
= 1.40 ft x 10-3 ft = 0.02 in
and
o —03 B (B8 53410 (12,-7/8 (8-13)
exg2 B 950 x 1.52 10

2.28 x 104 radians

[}
L]

0.013 degrees

For the shaft to be effectively rigid in bending, the quantity (EC/G*)(B/ZD)2
should be larger than 100 (Section 5, Equation 5-7). In the present case, it is
only 5.7, and therefore the shaft is of intermediate flexibility. As suggested in
Section 5, the displacement and rotation for shafts of this type should be
increased by about 25 percent. Even the increased values still meet the design

specification.

In the calculations presented above, the same value of rock modulus E, was used to
calculate both the axial and lateral displacements. This may not always be
justified, however, and the designer needs to determine that this assumption is
reasonable for the site. Axial displacement of the shaft essentially involves
shearing of the rock mass on vertical, cylindrical surfaces, while under lateral
loading, the deformation pattern in the rock mass is more complex. Therefore, in
the application of the linear theories to predict axial and lateral displacements
of a shaft, it may be more reasonable on occasion to adopt different values of E,

for the axial and lateral modes.



It is also necessary to check that adequate capacity can be provided by the rock
mass to resist the lateral loading, as suggested earlier in Section 3. The shaft
considered here has a ratio of D/B = 4, and it is likely that the full plane strain
limit pressure will develop at a depth of about 3 diameters. This could be
included in the determination of the lateral capacity; however, it will be simpler
and even more conservative to assume that the limiting normal stress on the
projected area of the face of the shaft is eqﬁal to the uniaxial compressive
strength of the rock mass, or qyt = /s qu, in which s is the parameter used in the
Hoek and Brown failure criterion (Section 3). Based on the description of the rock
mass given previously, Table 3-1 indicates a representative value of s = 0.1, and

therefore:
qult = /0.1 x 100 kip/ft2 = 31.6 kip/ft2

The ultimate lateral force can be estimated conservatively (given that values of s

and q, are representative) by:

Hyot = qu1t BD = 31.6 x 1.5 X 6 = 284.4 kips (8-14)
The factor of safety against failure under lateral loading then is:

F=HyeMH = 284.4/10 = 28.4 (8-15)
which meets the design specification more than adequately.

It should be noted that, for lower quality rock masses, the suggested values of s
(Table 3-1) decrease rapidly. For such cases, it may be necessary to increase the

shaft dimensions to achieve an adequate margin of safety for the lateral loading.

SUMMARY

The design example presented in this section has illustrated that the equations
presented in the previous sections can be used simply and efficiently in the
preliminary design process. Both capacities and displacements can be computed for

all loading modes, as long as adequate geotechnical data are available.






Section 9

CONCLUSIONS AND RECOMMENDATIONS

This report has addressed the mechanical behavior of cylindrical concrete drilled
shafts embedded in rock. Methods of analysis have been described which allow the
prediction of the shaft load-displacement behavior and ultimate capacity when

subjected to either axial load (compression or uplift), lateral load or moment, or

torsion. Coupling between the various modes of loading has not been considered.

Simple models for the mechanical behavior have been suggested, and these allow
closed form predictions of the response of a shaft when subjected to any of the
individual modes of loading addressed. For axial compression or uplift, initial
linear elastic response and shaft slippage in its socket have been considered.
Only the initial linear elastic response and the limiting condition have been

considered for both the lateral and torsional loading modes.

The application of these models to the interpretation of field loading tests
reported in the literature also has been considered. All except two of the field
tests involved axial loading and, by fitting the simple model to the observed
behavior for these cases, it has been possible to deduce a likely range of values
for the model parameters. Furthermore, it has been possible to correlate some of
the basic parameters of the model to a single index property, the uniaxial
compressive strength of the rock. This is a major simplification, but one of
convenience, because it allows preliminary estimates of the model parameters to be
made for initial design calculations. Greater confidence in the model and its
predictions only can be obtained from further field load testing with proper

documentation.

There are very few field data from lateral and torsional load tests on drilled
shafts in rock, and therefore research in this area is warranted. Furthermore,
very little is known about the behavior of drilled shafts in rock under the
combined action of two or more of the loading modes. Problems of this type also

warrant further study.

The closed form expressions presented in this report were developed for essentially



homogeneous rock masses. At the present time, comparable expressions do not exist
for layered rock masses. However, judicious use of the solutions presented will
allow bounds to be established on the shaft behavior for equivalent homogeneous
assumptions using the strongest and weakest rock layer properties. An estimate of
the actual behavior then can be made by appropriately weighting the actual layer
thicknesses and properties. More precise solutions for multi-layered rock masses

require a general three-dimensional numerical analysis.
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Appendix A

BACK ANALYSIS OF AXIAL LOAD TESTS

The figures in this appendix show details of the field load tests listed in Table
7-1. Each plot shows the actual test data (applied load versus axial displacement)
and the fit that was made to obtain the parameters of the simple analytical model
for axial loading. In Figures A-1 to A-14, the axial loads are compressive, and
the displacements actually are shaft butt settlements. In Figures A-15 to A-25,
the loads are uplift, and the displacements are upward movements of the shaft

butt. In Figures A-4 and A-5, measured dilations at the shaft walls also have been
plotted against axial displacement. The system of units shown on each figure is
the same as that given in the corresponding source reference. Note also that the

deduced S values always are in the units of load per displacement.
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Figure A-24. Load-Displacement Behavior of Shaft 24-3

(Test Data from Kulhawy, et al., 7)
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Appendix B

UNITS CONVERSIONS

LENGTH

1 foot (ft) = 0.3048 meters (m)

1 inch (in) = 25.4 millimeters (mm)
MASS

1 pound (1b) = 0.4536 kilograms (kg)

FORCE
1 ton (t) = 2000 pounds (1lb)
= 2 kips (k)
= 8.897 kilonewtons (kN)
STRESS
1 ton/square foot (tsf) = 1.024 kilograms/square centimeter (kg/cmz)
= 95.76 kilonewtons/square meter (kN/mz)
= 0.0958 meganewtons/square meter (MN/mZ)
= 2 kips/square foot (ksf)
= 13.89 pounds/square inch (psi)
= 0.945 atmosphere (atm)
1 Newton/square meter (N/m2) = 1 Pascal (Pa)
1 bar = 100 kilonewtons/square meter (kN/mz)

(5.1 tsf = 1 kg/em? =~ 100 kN/m2 ~ 1 atm =~ 1 bar)

UNIT WEIGHT
1 pound/cubic foot (lb/ft3 or pcf) = 0.016 grams/cubic centimeter (g/cm3)
= 0.158 kilonewtons/cubic meter (kN/m3)
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