- Impact of train speed on the mechanical behaviours of track-bed materials
- Francisco Lamas-Lopez ; Yu-Jun Cui ; Nicolas Calon ; Sofia Costa D'Aguiar ; Tongwei Zhang
- Book Title / Journal: Journal of Rock Mechanics and Geotechnical Engineering
- Year: 2017 , Volume: 9
- Rock Mechanics
- Keywords: Field experimentation ; Conventional track-bed materials ; Train speed upgrade ; Mechanical behaviours ; Reversible modulus ; damping ratio
- Abstract
For the 30,000 km long French conventional railway lines (94% of the whole network), the train speed is currently limited to 220 km/h, whilst the speed is 320 km/h for the 1800 km long high-speed lines. Nowadays, there is a growing need to improve the services by increasing the speed limit for the conventional lines. This paper aims at studying the influence of train speed on the mechanical behaviours of track-bed materials based on field monitoring data. Emphasis is put on the behaviours of interlayer and subgrade soils. The selected experimental site is located in Vierzon, France. Several sensors including accelerometers and soil pressure gauges were installed at different depths. The vertical strains of different layers can be obtained by integrating the records of accelerometers installed at different track-bed depths. The experimentation was carried out using an intercity test train running at different speeds from 60 km/h to 200 km/h. This test train was composed of a locomotive (22.5 Mg/axle) and 7 “Corail” coaches (10.5 Mg/axle). It was observed that when the train speed was raised, the loadings transmitted to the track-bed increased. Moreover, the response of the track-bed materials was amplified by the speed rise at different depths: the vertical dynamic stress was increased by about 10% when the train speed was raised from 60 km/h to 200 km/h for the locomotive loading, and the vertical strains doubled their quasi-static values in the shallow layers. Moreover, the stress–strain paths were estimated using the vertical stress and strain for each train speed. These loading paths allowed the resilient modulus Mr to be determined. It was found that the resilient modulus (Mr) was decreased by about 10% when the train speed was increased from 100 km/h to 200 km/h. However, the damping ratio (Dr) kept stable in the range of speeds explored. PDF |
- Assessment of the methods for determining net radiation at different time-scales of meteorological variables
- Ni An ; Sahar Hemmati ; Yu-Jun Cui
- Book Title / Journal: Journal of Rock Mechanics and Geotechnical Engineering
- Year: 2017 , Volume: 9
- Rock Mechanics
- Keywords: Energy balance ; Net radiation ; Different time-scales ; Meteorological data
- Abstract
When modeling the soil/atmosphere interaction, it is of paramount importance to determine the net radiation flux. There are two common calculation methods for this purpose. Method 1 relies on use of air temperature, while Method 2 relies on use of both air and soil temperatures. Nowadays, there has been no consensus on the application of these two methods. In this study, the half-hourly data of solar radiation recorded at an experimental embankment are used to calculate the net radiation and long-wave radiation at different time-scales half-hourly, hourly, and daily) using te two methods. The results show that, compared with Method 2 which has been widely adopted in agronomical, geotechnical and geo-environmental applications, Method 1 is more feasible for its simplicity and accuracy at shorter time-scale. Moreover, in case of longer time-scale, daily for instance, less variations of net radiation and long-wave radiation are obtained, suggesting that no detailed soil temperature variations can be obtained. In other words, shorter time-scales are preferred in determining net radiation flux. PDF |
- On the hydro-mechanical behaviour of MX80 bentonite-based materials
- Yu-Jun Cui
- Book Title / Journal: Journal of Rock Mechanics and Geotechnical Engineering
- Year: 2017 , Volume: 9
- Rock Mechanics
- Keywords: Bentonite-based materials ; Water retention ; hydraulic conductivity ; Mechanical behaviour ; microstructure ; Dry density evolution
- Abstract
Bentonite-based materials have been considered in many countries as engineered barrier/backfilling materials in deep geological disposal of high-level radioactive waste. During the long period of waste storage, these materials will play an essential role in ensuring the integrity of the storage system that consists of the waste canisters, the engineered barrier/backfill, the retaining structures as well as the geological barrier. Thus, it is essential to well understand the hydro-mechanical behaviours of these bentonite-based materials. This review paper presents the recent advances of knowledge on MX80 bentonite-based materials, in terms of water retention properties, hydraulic behaviour and mechanical behaviour. Emphasis is put on the effect of technological voids and the role of the dry density of bentonite. The swelling anisotropy is also discussed based on the results from swelling tests with measurements of both axial and radial swelling pressures on a sand-bentonite mixture compacted at different densities. Microstructure observation was used to help the interpretation of macroscopic hydro-mechanical behaviour. Also, the evolution of soil microstructure thus the soil density over time is discussed based on the results from mock-up tests. This evolution is essential for understanding the long-term hydro-mechanical behaviour of the engineered barrier/backfill. PDF |
- Effects of lime treatment on the microstructure and hydraulic conductivity of Héricourt clay
- Thanh Danh Tran ; Yu-Jun Cui ; Anh Minh Tang ; Martine Audiguier ; Roger Cojean
- Book Title / Journal: Journal of Rock Mechanics and Geotechnical Engineering
- Year: 2014 , Volume: 6
- Rock Mechanics
- Keywords: Clays ; lime hydration ; hydraulic conductivity ; microstructure ; Temperature effect
- Abstract
This study aims at evidencing the effects of lime treatment on the microstructure and hydraulic conductivity of a compacted expansive clay, with emphasis put on the effect of lime hydration and modification. For this purpose, evolutions of hydraulic conductivity were investigated for both lime-treated and untreated soil specimens over 7 d after full saturation of the specimens and their microstructures were observed at the end. Note that for the treated specimen, dry clay powder was mixed with quicklime prior to compaction in order to study the effect of lime hydration. It is observed that lime hydration and modification did not affect the intra-aggregate pores but increased the inter-aggregates pores size. This increase gave rise to an increase of hydraulic conductivity. More precisely, the hydraulic conductivity of lime-treated specimen increased progressively during the first 3 d of modification phase and stabilised during the next 4 d which correspond to a short period prior to the stabilisation phase. The microstructure observation showed that stabilisation reactions took place after 7 d. Under the effect of stabilisation, a decreasing hydraulic conductivity can be expected in longer time due to the formation of cementitious compounds. PDF |
- Microstructure and anisotropic swelling behaviour of compacted bentonite/sand mixture
- Simona Saba ; Jean-Dominique Barnichon ; Yu-Jun Cui ; Anh Minh Tang ; Pierre Delage
- Book Title / Journal: Journal of Rock Mechanics and Geotechnical Engineering
- Year: 2014 , Volume: 6
- Rock Mechanics
- Keywords: Bentonite/sand mixture ; nuclear waste disposal ; Anisotropy ; swelling pressure ; microstructure ; Microfocus X-ray computed tomography (μCT)
- Abstract
Pre-compacted elements (disks, torus) of bentonite/sand mixture are candidate materials for sealing plugs of radioactive waste disposal. Choice of this material is mainly based on its swelling capacity allowing all gaps in the system to be sealed, and on its low permeability. When emplaced in the gallery, these elements will start to absorb water from the host rock and swell. Thereby, a swelling pressure will develop in the radial direction against the host rock and in the axial direction against the support structure. In this work, the swelling pressure of a small scale compacted disk of bentonite and sand was experimentally studied in both radial and axial directions. Different swelling kinetics were identified for different dry densities and along different directions. As a rule, the swelling pressure starts increasing quickly, reaches a peak value, decreases a little and finally stabilises. For some dry densities, higher peaks were observed in the radial direction than in the axial direction. The presence of peaks is related to the microstructure change and to the collapse of macro-pores. In parallel to the mechanical tests, microstructure investigation at the sample scale was conducted using microfocus X-ray computed tomography (μCT). Image observation showed a denser structure in the centre and a looser one in the border, which was also confirmed by image analysis. This structure heterogeneity in the radial direction and the occurrence of macro-pores close to the radial boundary of the sample can explain the large peaks observed in the radial swelling pressure evolution. Another interesting result is the higher anisotropy found at lower bentonite dry densities, which was also analysed by means of μCT observation of a sample at low bentonite dry density after the end of test. It was found that the macro-pores, especially those between sand grains, were not filled by swelled bentonite, which preserved the anisotropic microstructure caused by uniaxial compression due to the absence of microstructure collapse. PDF |
- On the chemo-thermo-hydro-mechanical behaviour of geological and engineered barriers
- Yu-Jun Cui ; Anh Minh Tang
- Book Title / Journal: Journal of Rock Mechanics and Geotechnical Engineering
- Year: 2013 , Volume: 5
- Rock Mechanics
- Keywords: Boom Clay (BC) ; Bentonite-based materials ; Mechanical behaviour ; hydraulic conductivity ; Pore-water salinity ; Technological voids
- Abstract
An overview of the recent findings about the chemo-hydro-mechanical behaviour of materials used for both geological and engineered barriers in nuclear waste disposal is presented, through some examples about the natural Boom Clay (BC) and compacted bentonite-based materials. For the natural BC, it was found that compression index identified from both oedometer and isotropic compression tests is similar and the compressibility of BC from the Mol site is higher than that of BC from the Essen site; the shear strength of Mol BC is also higher than that of the Essen BC, suggesting a significant effect of carbonates content; the thermal volume change is strongly overconsolidation ratio (OCR) dependent—low OCR values promote thermal contraction while high OCR values favour thermal dilation; the volume change behaviour is also strongly time dependent and this time dependent behaviour is governed by the stress level and temperature; the effect of pore-water salinity on the volume change behaviour can be significant when the smectite content is relatively high. For the bentonite-based materials, it was found that thermal contraction also occurs at low OCR values, but this is suction dependent—suction promotes thermal dilation. Under constant volume conditions, wetting results in a decrease of hydraulic conductivity, followed by an increase. This is found to be related to changes in macro-pores size—wetting induces a decrease of macro-pores size, followed by an increase due to the aggregates fissuring. The presence of technological voids can increase the hydraulic conductivity but does not influence the swelling pressure. PDF |